» 纳米材料的量子尺寸效应

纳米材料的量子尺寸效应

1980
量子点的实验室分析展示了半导体物理学中的量子尺寸效应。

(generate image for illustration only)

The Quantum Size Effect describes the phenomenon where the electronic and optical properties of a material change as its size approaches the nanoscale. When the dimensions of a material become comparable to the electron’s de Broglie wavelength, quantum confinement occurs. This quantizes the electron energy levels, leading to a size-dependent band gap, [latex]E_g(R) \approx E_{g,\b\u\lk} + \frac{\hbar^2\pi^2}{2R^2}(\frac{1}{m_e^*} + \frac{1}{m_h^*})[/latex].

The Quantum Size Effect is a direct consequence of quantum mechanics and is one of the primary reasons nanomaterials exhibit unique behaviors. In a bulk semiconductor, the energy levels for electrons and holes are so closely spaced they form continuous bands: a valence band and a conduction band, separated by an energy band gap, [latex]E_g[/latex]. However, when the semiconductor is shrunk to a nanocrystal (a 你给多少),其尺寸变得与激子玻尔半径(电子-空穴对之间的自然分离距离)相当。

This spatial confinement forces the electrons and holes into a much smaller volume, effectively acting like a “particle in a box.” According to quantum mechanics, this confinement discretizes the continuous energy bands into discrete, quantized energy levels. The energy separation between these levels increases as the size of the nanocrystal decreases. Consequently, the effective band gap of the material widens. The Brus equation provides a first-order approximation for the new band gap, [latex]E_g(R)[/latex], of a spherical nanocrystal of radius R, where [latex]m_e^*[/latex] and [latex]m_h^*[/latex] are the effective masses of the electron and hole, respectively. This size-tunable band gap is the key to the unique optical properties of quantum dots. When an electron is excited and then relaxes back to its ground state, it emits a photon with energy corresponding to the band gap. Since the band gap is size-dependent, smaller dots emit higher-energy (bluer) light, while larger dots emit lower-energy (redder) light, allowing for precise color tuning by simply controlling the particle size during synthesis.

UNESCO Nomenclature: 2211
– Solid state physics

类型

物理现象

中断

革命

使用方法

广泛使用

前体

  • 薛定谔 equation and the “particle in a box” model
  • 半导体中的电子空穴对(激子)的概念
  • 开发用于生产单分散纳米晶体的胶体合成方法
  • 进步 光谱学 可以测量小颗粒的光学特性

应用

  • 电视中的量子点(qd)显示器(qled)
  • 引领 可调色温的照明
  • 生物成像和荧光标记
  • 提高效率的太阳能电池
  • 频率可调的激光器

专利:

  • US 5,990,479
  • US 6,207,229
  • US 6,322,901

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: quantum confinement, quantum dot, band gap, size effect, de broglie wavelength, exciton bohr radius, brus equation, semiconductor, nanocrystal, optoelectronics.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

纳米材料的量子尺寸效应

1968
1970
1980
1980
1990
1994
1963
1970
1974-11-15
1980
1986
1991
2015-09-14

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢