» 麦克斯韦-法拉第方程

麦克斯韦-法拉第方程

1861
  • Michael Faraday
  • James Clerk Maxwell
说明电磁学中麦克斯韦-法拉第方程的实验室装置。

(generate image for illustration only)

This is the differential form of Faraday’s law of induction, one of Maxwell’s four equations. It states that a time-varying magnetic field ([latex]\mathbf{B}[/latex]) always accompanies a spatially varying, non-conservative electric field ([latex]\mathbf{E}[/latex]). The relationship is expressed as [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex]. This equation governs how changing magnetic fields create electric fields at a specific point in space.

The Maxwell-Faraday equation is a fundamental law of electromagnetism that describes how a changing magnetic field generates an electric field. In its differential form, [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex], it provides a localized, microscopic description of this phenomenon. Here, [latex]\nabla \times[/latex] is the curl operator, which measures the rotational tendency of a vector field. [latex]\mathbf{E}[/latex] represents the electric field, and [latex]\mathbf{B}[/latex] is the magnetic field. The term [latex]\frac{\partial \mathbf{B}}{\partial t}[/latex] is the partial derivative of the magnetic field with respect to time, signifying its rate of change at a specific point in space.

A key implication of this equation is that the induced electric field is non-conservative. A conservative vector field has a curl of zero, meaning the line integral around any 闭环 is zero. Since the curl of [latex]\mathbf{E}[/latex] is non-zero in the presence of a changing magnetic field, the work done by this electric field on a charge moving in a closed loop is not zero. This non-zero work per unit charge is precisely the 电动势 (EMF) that drives current in a conductor.

This equation was James Clerk Maxwell’s generalization of Michael Faraday’s experimental findings from 1831. Faraday observed that changing magnetic flux through a circuit induced a current, but he described it in terms of flux and EMF. Maxwell reformulated this observation into a local field equation, making it a cornerstone of his unified theory of electromagnetism. It elegantly connects electricity and magnetism, showing they are not separate phenomena but two facets of a single electromagnetic field. This formulation is crucial for deriving the wave equation for electromagnetic radiation, predicting the existence of light waves, radio waves, and other forms of electromagnetic energy propagating through space.

UNESCO Nomenclature: 2205
- 电磁学

类型

物理法

中断

基础

使用方法

广泛使用

前体

  • Hans Christian Ørsted’s discovery of the magnetic effect of electric current (1820)
  • André-Marie Ampère’s formulation of the law governing forces between currents
  • Michael Faraday’s experimental discovery of electromagnetic induction (1831)
  • 向量微积分的发展

应用

  • 发电机
  • 感应电动机
  • 变压器
  • 无线电力传输
  • 电磁炉烹饪
  • 磁记录头
  • 粒子加速器

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: maxwell-faraday equation, differential form, curl, electric field, magnetic field, electromagnetism, induction, maxwell’s equations.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢