» Lambda演算

Lambda演算

1930
  • Alonzo Church
Modern office setting with lambda calculus equations and functional programming resources.

Lambda演算是一种数学逻辑中的形式化系统,用于表达基于函数抽象和应用的计算,并使用变量绑定和替换。它是一种通用的计算模型,可用于模拟任何图灵机。它构成了Lisp、Haskell和F#等函数式编程语言的理论基础。

Developed by Alonzo Church in the 1930s, lambda calculus provides a minimalist yet powerful framework for defining and applying functions. Its entire syntax consists of just three components: variables (e.g., `x`), abstractions, and applications. An abstraction, or lambda function, is an anonymous function definition, written as [latex]\lambda x.M[/latex], where `x` is the input parameter and `M` is the body of the function. An application, written as `M N`, represents applying function `M` to argument `N`. Computation in lambda calculus proceeds through a process called beta reduction, where an application of a lambda function to an argument is resolved by substituting the argument for the bound variable within the function’s body. For example, applying [latex](\lambda x.x+1)[/latex] to `3` reduces to `3+1`.

尽管语法简略,lambda 演算却是图灵完备的。它可以纯粹通过函数来​​表示数字(丘奇数)、布尔值、数据结构和控制流(例如递归)。这表明函数的概念足以实现通用计算。这与基于状态和变异的图灵机模型形成了对比。丘奇-罗瑟定理是 lambda 演算的一个关键属性,它指出应用归约的顺序不会改变最终结果,这一属性被称为汇合。这使得对程序行为的推理比状态变化顺序至关重要的命令式模型要简单得多。

Lambda calculus has had a profound influence on 编程语言 design. It is the direct ancestor of the functional programming paradigm. Concepts that are now common in many languages, such as first-class functions (treating functions as data), higher-order functions (functions that take other functions as arguments), closures (functions that capture their lexical environment), and currying, all have their roots in lambda calculus. Languages like Lisp were among the first to implement these ideas, and modern languages from Haskell to JavaScript and Python have integrated them deeply into their design.

UNESCO Nomenclature: 1202
- 计算机科学

类型

抽象系统

中断

Substancial

使用方法

广泛使用

前体

  • Gottlob Frege’s work on formal logic and functions in his ‘Begriffsschrift’
  • 乔治·康托尔 (Georg Cantor) 创立的集合论
  • Work on mathematical logic by Bertrand Russell and Alfred North Whitehead in ‘Principia Mathematica’
  • 由 Moses Schönfinkel 和 Haskell Curry 开发的组合逻辑

应用

  • 函数式编程语言(lisp、haskell、f#、ocaml)
  • 类型理论研究(例如构造演算)
  • 证明助手(coq、agda、isabelle)
  • 函数式语言的编译器设计
  • formal 确认软件 and hardware
  • MapReduce编程模型

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: lambda calculus, functional programming, alonzo church, beta reduction, higher-order functions, lisp, haskell, formal system, computability, type theory.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢