» Faraday’s First Law of Electrolysis

Faraday’s First Law of Electrolysis

1834-01-01
  • Michael Faraday

This law states that the mass of a substance altered at an electrode during electrolysis is directly proportional to the quantity of electricity transferred. The relationship is expressed by the formula [latex]m = \frac{Q}{F} \frac{M}{z}[/latex], where m is mass, Q is total electric charge, F is the Faraday constant, M is molar mass, and z is the valence number of ions of the substance.

Faraday’s first law of electrolysis provides a quantitative relationship between electricity and chemical change. It establishes that the amount of chemical reaction that occurs at an electrode is directly proportional to the electric charge passed through the electrolyte. The charge, Q, is the product of the current (I) and the time (t), so Q = It. The formula can be rewritten as [latex]m = (\frac{M}{zF})It[/latex], highlighting this dependency.

In this equation, the term [latex]\frac{M}{zF}[/latex] is known as the electrochemical equivalent of the substance. It represents the mass of the substance deposited or liberated per unit of charge. The Faraday constant, F, is a fundamental physical constant representing the magnitude of electric charge per mole of electrons, approximately 96,485 coulombs per mole. The variable ‘z’ represents the number of moles of electrons transferred per mole of the substance in the electrode reaction (e.g., z=1 for Na⁺, z=2 for Cu²⁺, z=3 for Al³⁺).

This law was a monumental step in connecting the previously separate fields of electricity and chemistry. Before Faraday, the relationship was qualitative at best. His meticulous experiments, which involved passing known currents for measured times through various solutions and weighing the resulting deposits, provided the empirical evidence for this precise mathematical relationship. It laid the groundwork for electrochemistry as a quantitative science and demonstrated that electrical forces were directly linked to chemical bonding and reactions at a fundamental level, predating the discovery of the electron itself.

UNESCO Nomenclature: 2406
– Electrochemistry

类型

Physical Law

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • invention of the voltaic pile by alessandro volta
  • humphry davy’s isolation of sodium and potassium using electrolysis
  • discovery of the relationship between electricity and magnetism by hans christian Ørsted

应用

  • electroplating
  • electrowinning and electrorefining of metals
  • coulometry for chemical analysis
  • production of industrial chemicals
  • battery capacity measurement

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: faraday’s law, electrolysis, electrochemistry, quantity of electricity, faraday constant, electrochemical equivalent, electroplating, coulometry

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
Mechanical Engineer, Project, Process Engineering or R&D Manager
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢