» Cartesian Coordinate System

Cartesian Coordinate System

1640
  • René Descartes
  • Pierre de Fermat

The Cartesian coordinate system provides an algebraic model for Euclidean geometry. It uses one or more numbers, or coordinates, to uniquely determine the position of a point in space. In a plane, two perpendicular lines (the x-axis and y-axis) are used, allowing geometric shapes to be described by algebraic equations. This fusion of algebra and geometry is known as analytic geometry.

Developed in the 17th century, the Cartesian system revolutionized mathematics by creating a powerful link between the previously separate fields of geometry and algebra. A point in a two-dimensional plane is represented by an ordered pair of numbers [latex](x, y)[/latex], representing its signed distances from the y-axis and x-axis, respectively. This allows geometric concepts to be translated into algebraic language. For example, a circle with center [latex](h, k)[/latex] and radius [latex]r[/latex] can be described by the equation [latex](x-h)^2 + (y-k)^2 = r^2[/latex]. A line can be described by a linear equation like [latex]y = mx + b[/latex].

This correspondence works both ways: algebraic equations can be visualized as geometric shapes. This analytic geometry allows for the solution of geometric problems using algebraic manipulation, which is often simpler and more powerful than the purely synthetic methods of classical Greek geometry. The system extends naturally to three dimensions with a third axis (z), and to higher-dimensional spaces (n-dimensional Euclidean space, [latex]\mathbb{R}^n[/latex]), which are fundamental in fields like physics, data science, and machine learning. The Euclidean distance formula, [latex]d = \sqrt{(\Delta x)^2 + (\Delta y)^2}[/latex], is a direct application of the Pythagorean theorem within this coordinate system, solidifying its status as the standard model for Euclidean space.

UNESCO Nomenclature: 1204
– Geometry

类型

Abstract System

Disruption

Revolutionary

使用方法

Widespread Use

Precursors

  • Euclidean geometry’s axioms and theorems
  • The development of algebra, particularly by Persian mathematicians
  • Apollonius of Perga’s work on conic sections
  • The concept of latitude and longitude in cartography

应用

  • all forms of modern mapping and GPS
  • computer graphics, video games, and user interfaces
  • data visualization and statistical plotting
  • engineering and physics for modeling systems
  • 机器人 and machine vision

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: Cartesian coordinates, analytic geometry, René Descartes, algebra, geometry, coordinate system, x-y plane, Euclidean space

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢