流体力学 is the branch of applied mechanics concerned with the statics (fluids at rest) and dynamics (fluids in motion) of liquids and gases. It applies fundamental principles of mass, momentum, and energy conservation to analyze and predict fluid behavior. Its applications are vast, ranging from aerodynamics and hydraulics to meteorology and oceanography.
流体力学
- Archimedes
- Daniel Bernoulli
- Leonhard Euler
- Claude-Louis Navier
- George Gabriel Stokes
The governing equations of motion for a viscous fluid are the Navier-Stokes equations. These are a set of nonlinear partial differential equations that arise from applying Newton’s second law to fluid motion, combined with the assumption that fluid stress is the sum of a diffusing viscous term and a pressure term. For a compressible Newtonian fluid, the vector equation is: [latex]\rho(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}[/latex], where [latex]\rho[/latex] is density, [latex]\mathbf{v}[/latex] is velocity, [latex]p[/latex] is pressure, [latex]\mathbf{T}[/latex] is the stress tensor, and [latex]\mathbf{f}[/latex] represents body forces. Solving these equations is a central challenge in the field.
Fluid behavior is often characterized by dimensionless numbers. The most famous is the Reynolds number (Re), which describes the ratio of inertial forces to viscous forces and is used to predict the transition from smooth, orderly laminar flow to chaotic turbulent flow. Other important numbers include the Mach number for compressible flows and the Froude number for flows with a free surface. Due to the complexity of the governing equations, especially for turbulent flows, computational fluid dynamics (CFD) has become an essential tool, using numerical methods to solve and analyze problems involving fluid flows.
类型
Disruption
使用方法
Precursors
- Continuum 机械 assumption
- Newton’s laws of motion
- Principles of thermodynamics
- Development of calculus
- Archimedes’ principle on buoyancy
应用
- aerodynamics (design of aircraft wings, cars, and wind turbines)
- hydraulics (design of dams, pipelines, and pumps)
- meteorology (weather forecasting and climate modeling)
- biomedical engineering (analysis of blood flow in arteries)
- environmental engineering (modeling of pollutant dispersal in air and water)
专利:
迎接新挑战
机械工程师、项目或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
Related Invention, Innovation & Technical Principles