» 流体力学

流体力学

  • Archimedes
  • Daniel Bernoulli
  • Leonhard Euler
  • Claude-Louis Navier
  • George Gabriel Stokes

流体力学 is the branch of applied mechanics concerned with the statics (fluids at rest) and dynamics (fluids in motion) of liquids and gases. It applies fundamental principles of mass, momentum, and energy conservation to analyze and predict fluid behavior. Its applications are vast, ranging from aerodynamics and hydraulics to meteorology and oceanography.

The governing equations of motion for a viscous fluid are the Navier-Stokes equations. These are a set of nonlinear partial differential equations that arise from applying Newton’s second law to fluid motion, combined with the assumption that fluid stress is the sum of a diffusing viscous term and a pressure term. For a compressible Newtonian fluid, the vector equation is: [latex]\rho(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v}) = -\nabla p + \nabla \cdot \mathbf{T} + \mathbf{f}[/latex], where [latex]\rho[/latex] is density, [latex]\mathbf{v}[/latex] is velocity, [latex]p[/latex] is pressure, [latex]\mathbf{T}[/latex] is the stress tensor, and [latex]\mathbf{f}[/latex] represents body forces. Solving these equations is a central challenge in the field.

Fluid behavior is often characterized by dimensionless numbers. The most famous is the Reynolds number (Re), which describes the ratio of inertial forces to viscous forces and is used to predict the transition from smooth, orderly laminar flow to chaotic turbulent flow. Other important numbers include the Mach number for compressible flows and the Froude number for flows with a free surface. Due to the complexity of the governing equations, especially for turbulent flows, computational fluid dynamics (CFD) has become an essential tool, using numerical methods to solve and analyze problems involving fluid flows.

UNESCO Nomenclature: 2210
– Mechanics

类型

Abstract System

Disruption

Foundational

使用方法

Widespread Use

Precursors

  • Continuum 机械 assumption
  • Newton’s laws of motion
  • Principles of thermodynamics
  • Development of calculus
  • Archimedes’ principle on buoyancy

应用

  • aerodynamics (design of aircraft wings, cars, and wind turbines)
  • hydraulics (design of dams, pipelines, and pumps)
  • meteorology (weather forecasting and climate modeling)
  • biomedical engineering (analysis of blood flow in arteries)
  • environmental engineering (modeling of pollutant dispersal in air and water)

专利:

Potential Innovations Ideas

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: fluid mechanics, fluid dynamics, navier-stokes equations, viscosity, turbulent flow, laminar flow, aerodynamics, cfd

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

Related Invention, Innovation & Technical Principles

滚动至顶部

你可能还喜欢