Casa » Topological Space

Topological Space

1914
  • Felix Hausdorff

A topological space is an ordered pair [latex](X, \tau)[/latex], where [latex]X[/latex] is a set and [latex]\tau[/latex] is a collection of subsets of [latex]X[/latex], called open sets, satisfying three axioms: 1) The empty set [latex]\emptyset[/latex] and [latex]X[/latex] itself are in [latex]\tau[/latex]. 2) The union of any number of sets in [latex]\tau[/latex] is also in [latex]\tau[/latex]. 3) The intersection of any finite number of sets in [latex]\tau[/latex] is also in [latex]\tau[/latex].

The collection [latex]\tau[/latex] is called a topology on [latex]X[/latex]. The elements of [latex]X[/latex] are usually called points, and the subsets in [latex]\tau[/latex] are the open sets. A subset of [latex]X[/latex] is called closed if its complement is an open set. This axiomatic definition is extremely general and powerful, allowing for the study of spatial properties in a way that is independent of distance or measurement. For example, the set of real numbers [latex]\mathbb{R}[/latex] with the collection of all open intervals forms a topological space, known as the standard topology. However, many other, non-standard topologies can be defined on the same set [latex]\mathbb{R}[/latex]. The concept of a neighborhood of a point is fundamental; a neighborhood of a point [latex]x[/latex] is any subset of [latex]X[/latex] that contains an open set which in turn contains [latex]x[/latex]. This framework allows mathematicians to generalize concepts like limits and continuity from metric spaces to more abstract settings. The power of this definition lies in its ability to capture the essence of ‘closeness’ and ‘connectedness’ without relying on a metric, which makes it applicable to a vast range of mathematical and scientific problems where a notion of distance is not natural or available.

UNESCO Nomenclature: 1209
– Topology

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • Georg Cantor’s work on set theory
  • Bernhard Riemann’s concept of manifolds
  • Maurice Fréchet’s introduction of metric spaces
  • Henri Poincaré’s work on analysis situs

Applicazioni

  • defining continuity and convergence
  • general relativity
  • quantum field theory
  • data analysis (topological data analysis)
  • string theory

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: topological space, open set, axiom, Hausdorff, set theory, topology, abstract algebra, general topology

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti