Casa » Sheaf Cohomology

Sheaf Cohomology

1950
  • Jean Leray
  • Henri Cartan
  • Jean-Pierre Serre
  • Alexander Grothendieck

Sheaf cohomology is a central tool in modern algebraic geometry for studying global properties of geometric spaces. For a sheaf [latex]\mathcal{F}[/latex] on a space [latex]X[/latex], the cohomology groups [latex]H^i(X, \mathcal{F})[/latex] are vector spaces whose dimensions provide important invariants. The group [latex]H^0[/latex] represents global sections, while higher groups [latex]H^i[/latex] for [latex]i > 0[/latex] measure the obstructions to patching together local sections into a global one.

The intuition behind sheaf cohomology is to measure the failure of a certain ‘local-to-global’ principle. A sheaf is a tool that assigns data (like functions or vector spaces) to open sets of a topological space in a consistent way. The global sections functor, which takes a sheaf [latex]\mathcal{F}[/latex] and returns its group of global sections [latex]\Gamma(X, \mathcal{F})[/latex], is left exact but not always right exact. Sheaf cohomology groups are defined as the right derived functors of the global sections functor. This abstract definition from homological algebra provides a robust computational and theoretical struttura.

In practice, [latex]H^1(X, \mathcal{F})[/latex] often classifies certain geometric objects. For example, if [latex]\mathcal{O}^*[/latex] is the sheaf of non-vanishing regular functions, [latex]H^1(X, \mathcal{O}^*)[/latex] classifies line bundles on the scheme [latex]X[/latex]. The vanishing of cohomology groups has strong geometric consequences; for instance, Kodaira’s vanishing theorem states that for ample line bundles on a projective variety in characteristic zero, certain cohomology groups are zero, which has profound implications for the geometry of the variety. Serre’s FAC paper and Grothendieck’s Tohoku paper established sheaf cohomology as the correct language for algebraic geometry, replacing older, more ad-hoc methods.

UNESCO Nomenclature: 1105
– Geometry

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • sheaf theory (Jean Leray)
  • homological algebra (Cartan, Eilenberg)
  • de rham cohomology in differential geometry
  • algebraic topology (simplicial and singular homology)
  • čech cohomology

Applicazioni

  • generalization of the Riemann-Roch theorem (hirzebruch-riemann-roch)
  • string theory and theoretical physics (calculating states and anomalies)
  • proof of the weil conjectures (deligne)
  • classification of vector bundles and other geometric objects
  • deformation theory (studying how geometric objects can be varied)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: sheaf cohomology, sheaf, derived functor, global sections, obstruction, Čech cohomology, Serre, Grothendieck

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti