Casa » Tunneling quantistico

Tunneling quantistico

1927
  • Friedrich Hund
Microscopio a scansione tunneling in un laboratorio che dimostra i principi del tunneling quantistico.

(generate image for illustration only)

A quantum mechanical phenomenon where a wavefunction can propagate through a potential energy barrier. Classically, a particle lacking sufficient energy to surmount a barrier would be reflected. However, due to the wave-like nature of particles, there is a non-zero probability that the particle can appear on the other side of the barrier, effectively ‘tunneling’ through it.

Quantum tunneling is a direct consequence of the Heisenberg uncertainty principle and the probabilistic nature of a particle’s location described by its wavefunction. When a particle’s wavefunction encounters a potential barrier, it does not abruptly drop to zero. Instead, it decays exponentially inside the barrier. If the barrier is thin enough, the wavefunction can have a small but non-zero amplitude on the other side. Since the probability of finding the particle is related to the square of the wavefunction’s amplitude, there is a finite probability of the particle being detected on the far side of the barrier.

The probability of tunneling decreases exponentially with the thickness of the barrier and the square root of the barrier’s height and the particle’s mass. This is why tunneling is significant for microscopic particles like electrons but negligible for macroscopic objects. For example, in nuclear fusion within the Sun, protons do not have enough thermal energy to overcome their mutual electrostatic repulsion (the Coulomb barrier). Fusion is only possible because the protons can tunnel through this barrier, allowing the strong nuclear force to bind them together. Similarly, the scanning tunneling microscope (STM) works by measuring the tunneling current of electrons between a sharp metallic tip and a sample surface, allowing for imaging with atomic resolution.

UNESCO Nomenclature: 2210
- Fisica quantistica

Tipo

Sistema astratto

Interruzione

Sostanziale

Utilizzo

Uso diffuso

Precursori

  • Schrödinger equation (1926)
  • Wave-particle duality
  • Studies of radioactivity (alpha decay)
  • Heisenberg uncertainty principle (1927)

Applicazioni

  • scanning tunneling microscope (STM)
  • tunnel diodes in electronics
  • flash memory (floating-gate transistors)
  • nuclear fusion in stars
  • alpha decay of atomic nuclei

Brevetti:

NA

Potenziali idee innovative

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: quantum tunneling, wavefunction, potential barrier, scanning tunneling microscope, nuclear fusion, alpha decay, quantum mechanics, probability.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto, ingegneria di processo o ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, produzione snella, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Contesto storico

(se la data non è nota o non è rilevante, ad esempio "meccanica dei fluidi", viene fornita una stima approssimativa della sua notevole comparsa)

Principi di invenzione, innovazione e tecnica correlati

Torna in alto

Potrebbe anche piacerti