Casa » Perihelion Precession of Mercury

Perihelion Precession of Mercury

1915
  • Urbain Le Verrier
  • Albert Einstein

General relativity provided the first accurate explanation for the anomalous precession of Mercury’s perihelion. Newtonian gravity could not fully account for the slow, gradual shift in the orientation of Mercury’s elliptical orbit. Einstein’s theory correctly predicted the missing 43 arcseconds per century, attributing it to the curvature of spacetime around the Sun, a major early triumph for the theory.

In the 19th century, astronomers observed that Mercury’s elliptical orbit was not stationary. Its point of closest approach to the Sun, the perihelion, was slowly advancing, or precessing. While most of this precession was explained by the gravitational tugs of other planets according to Newton’s laws, a small discrepancy of about 43 arcseconds per century remained unaccounted for. This anomaly puzzled scientists, with some proposing the existence of an undiscovered planet, Vulcan, between Mercury and the Sun.

In 1915, Albert Einstein applied his new theory of general relativity to the problem. His calculations showed that the curvature of spacetime caused by the Sun’s mass would introduce a correction to the Newtonian description of gravity. This correction perfectly accounted for the missing 43 arcseconds per century without any ad-hoc parameters. Unlike Newton’s theory, where orbits are closed ellipses (in a two-body system), general relativity predicts that orbits are not closed but trace a rosette pattern. This effect is most pronounced for objects in strong gravitational fields and with eccentric orbits, making Mercury the ideal candidate in our solar system. The successful explanation of Mercury’s perihelion precession was one of the first strong pieces of evidence that general relativity was a more accurate description of gravity than Newton’s theory.

UNESCO Nomenclature: 2211
– Relativity

Tipo

Abstract System

Disruption

Substantial

Utilizzo

Widespread Use

Precursors

  • Kepler’s laws of planetary motion
  • Newton’s law of universal gravitation
  • Urbain Le Verrier’s detailed calculations of planetary orbits
  • Special relativity

Applicazioni

  • first major observational evidence supporting general relativity
  • a precision test for general relativity and other theories of gravity
  • used to constrain alternative gravity theories
  • high-precision celestial meccanica calculations

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: perihelion precession, mercury, general relativity, newtonian gravity, spacetime curvature, orbital mechanics, celestial mechanics, gravity

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti