Casa » Homeomorphism

Homeomorphism

1895
  • Henri Poincaré

A homeomorphism is a continuous function between two topological spaces that has a continuous inverse function. Two topological spaces are called homeomorphic if such a function exists. From a topological viewpoint, homeomorphic spaces are identical. This concept captures the idea that an object can be stretched, bent, or deformed into another without tearing or gluing, like a coffee mug into a donut.

More formally, a function [latex]f: X \to Y[/latex] between two topological spaces [latex](X, \tau_X)[/latex] and [latex](Y, \tau_Y)[/latex] is a homeomorphism if it is a bijection, it is continuous, and its inverse [latex]f^{-1}: Y \to X[/latex] is also continuous. The condition that the inverse must also be continuous is crucial. For example, the function [latex]f: [0, 2\pi) \to S^1[/latex] defined by [latex]f(t) = (\cos(t), \sin(t))[/latex] is a continuous bijection from a half-open interval to a circle, but its inverse is not continuous at the point (1,0), so it is not a homeomorphism. Homeomorphism is an equivalence relation on the class of all topological spaces. The resulting equivalence classes are called homeomorphism classes. The central problem in topology is to determine whether two given topological spaces are homeomorphic. To do this, topologists find topological invariants—properties of spaces that are preserved under homeomorphisms. If two spaces do not share an invariant, they cannot be homeomorphic. Examples of topological invariants include connectedness, compactness, and the fundamental group.

UNESCO Nomenclature: 1209
– Topology

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • Leonhard Euler’s work on graph theory and polyhedra
  • August Ferdinand Möbius’s discovery of the Möbius strip
  • Felix Klein’s Erlangen program
  • The development of continuous functions by Cauchy and Weierstrass

Applicazioni

  • classification of geometric objects
  • knot theory
  • topological data analysis
  • computer graphics and 3d modeling
  • robotics and motion planning

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: homeomorphism, continuous deformation, topological equivalence, donut, coffee mug, topological invariant, bijection, continuous function

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti