Casa » Fundamental Solution (Green’s Function)

Fundamental Solution (Green’s Function)

1828
  • George Green

A fundamental solution of a linear partial differential operator [latex]L[/latex] is a solution to the equation [latex]Lu = delta(x)[/latex], where [latex]delta(x)[/latex] is the Dirac delta function. It represents the response of the system to a point source or impulse. Once known, the solution to the inhomogeneous equation [latex]Lu = f(x)[/latex] can be found by convolution: [latex]u(x) = (G * f)(x)[/latex], where [latex]G[/latex] is the fundamental solution.

The concept of a fundamental solution, often closely related to a Green’s function, is a powerful tool for solving inhomogeneous linear PDEs. The Dirac delta function [latex]delta(x)[/latex] is a generalized function representing an idealized point source of infinite density and unit total mass, concentrated at [latex]x=0[/latex]. The fundamental solution [latex]G(x)[/latex] is therefore the effect or field generated by this single point source.

The power of this metodo comes from the superposition principle, which applies to linear equations. Any general source term [latex]f(x)[/latex] can be thought of as a sum (or integral) of infinitely many weighted point sources. The total solution [latex]u(x)[/latex] is then the superposition of the responses to each of these point sources. This superposition is mathematically expressed by the convolution integral [latex]u(x) = int G(x-y)f(y) dy[/latex]. This transforms the problem of solving a PDE into the problem of finding the fundamental solution and then performing an integration.

For example, the fundamental solution for the Laplace operator in three dimensions ([latex]L = nabla^2[/latex]) is [latex]G(vec{r}) = -frac{1}{4pi|vec{r}|}[/latex], which is the form of the electrostatic or gravitational potential from a point charge or mass. The fundamental solution for the heat equation is the ‘heat kernel’, a Gaussian function that spreads out over time. Green’s functions are closely related but are tailored to specific domains and boundary conditions, often constructed from the fundamental solution.

UNESCO Nomenclature: 1208
– Mathematical physics

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • superposition principle for linear equations
  • potential theory of laplace and poisson
  • fourier analysis and convolution theorem
  • dirac’s formulation of the delta function

Applicazioni

  • electromagnetism for calculating fields from charge distributions
  • quantum field theory for calculating propagators
  • structural engineering for determining the response of a structure to a point load
  • acoustics for modeling sound from a point source
  • image processing for deblurring (deconvolution)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: fundamental solution, green’s function, dirac delta, point source, convolution, linear pde, potential theory, propagator

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti