Casa » Faraday’s Law of Induction (integral form)

Faraday’s Law of Induction (integral form)

1831
  • Michael Faraday

This law states that the electromotive force (EMF, [latex]\mathcal{E}[/latex]) induced in any closed circuit is equal to the negative of the time rate of change of the magnetic flux ([latex]\Phi_B[/latex]) through the circuit. The mathematical expression is [latex]\mathcal{E} = -\frac{d\Phi_B}{dt}[/latex]. This principle is the basis for electric generators, transformers, and inductors, describing the macroscopic effect of induction.

The integral form of Faraday’s law of induction provides a macroscopic view of the relationship between a changing magnetic environment and an electrical circuit. It defines the electromotive force, or EMF ([latex]\mathcal{E}[/latex]), as the line integral of the electric field [latex]\mathbf{E}[/latex] around a closed loop [latex]\partial\Sigma[/latex]: [latex]\mathcal{E} = \oint_{\partial\Sigma} \mathbf{E} \cdot d\mathbf{l}[/latex]. This EMF represents the total voltage that would be measured by a voltmeter placed in the loop if it were cut open. The law equates this EMF to the rate of change of magnetic flux, [latex]\Phi_B[/latex], passing through the surface [latex]\Sigma[/latex] bounded by the loop.

Magnetic flux is defined as the surface integral of the magnetic field [latex]\mathbf{B}[/latex] over the surface [latex]\Sigma[/latex]: [latex]\Phi_B = \iint_\Sigma \mathbf{B} \cdot d\mathbf{A}[/latex]. Therefore, the full law is written as [latex]\oint_{\partial\Sigma} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \iint_\Sigma \mathbf{B} \cdot d\mathbf{A}[/latex]. The negative sign, formalized by Lenz’s law, indicates that the induced EMF creates a current that generates a magnetic field opposing the original change in flux. This opposition is a manifestation of the conservation of energy.

This law is remarkably general. The change in flux can be caused by several factors: the magnetic field itself can change in strength, the loop can change its area, the orientation of the loop relative to the field can change, or any combination of these. This versatilità explains its application in a vast range of devices. For instance, in an AC generator, a coil of wire (the loop) is rotated in a constant magnetic field, continuously changing the orientation and thus the flux, inducing a sinusoidal EMF. In a transformer, a changing current in a primary coil creates a changing magnetic field, which in turn induces an EMF in a secondary coil.

UNESCO Nomenclature: 2205
– Electromagnetism

Tipo

Physical Law

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Discovery of the magnetic properties of lodestone
  • William Gilbert’s work on magnetism (‘De Magnete’, 1600)
  • Hans Christian Ørsted’s observation that electric currents create magnetic fields (1820)
  • André-Marie Ampère’s mathematical description of electromagnetism

Applicazioni

  • electric transformers
  • alternating current (AC) generators
  • induction motors
  • inductors in electronic circuits
  • credit card magnetic stripe readers
  • electric guitar pickups
  • ground fault circuit interrupters (GFCIs)

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: faraday’s law, integral form, electromotive force, magnetic flux, induction, lenz’s law, electric generator, transformer

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti