Casa » Einstein Field Equations

Einstein Field Equations

1915-11
  • Albert Einstein
  • David Hilbert

The Einstein Field Equations (EFE) are a set of ten coupled, non-linear partial differential equations that form the core of general relativity. They describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy. The equation is concisely written as [latex]G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}[/latex], relating spacetime geometry to its energy-momentum content.

These equations are the mathematical foundation of general relativity. In the equation [latex]G_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa T_{\mu\nu}[/latex], the left side represents the geometry of spacetime, while the right side represents the matter and energy content within it. The Einstein tensor, [latex]G_{\mu\nu}[/latex], is a specific combination of the Ricci tensor and the scalar curvature, which are derived from the metric tensor [latex]g_{\mu\nu}[/latex]. The metric tensor itself defines all geometric properties of spacetime, such as distance, volume, and curvature. The term [latex]\Lambda[/latex] is the cosmological constant, originally introduced by Einstein to allow for a static universe and now associated with dark energy and cosmic acceleration.

On the right side, the stress-energy tensor, [latex]T_{\mu\nu}[/latex], is a mathematical object that describes the density and flux of energy and momentum in spacetime. It acts as the source of the gravitational field, analogous to how mass is the source of gravity in Newton’s theory. The constant [latex]\kappa = \frac{8\pi G}{c^4}[/latex] is the Einstein gravitational constant, which ensures that the theory’s predictions match Newtonian gravity in the weak-field, low-velocity limit.

Solving these equations is notoriously difficult due to their non-linear nature. The equations show that matter tells spacetime how to curve, and curved spacetime tells matter how to move. This feedback loop is the source of the non-linearity. Only a handful of exact analytical solutions are known, such as the Schwarzschild solution for a spherical mass (a black hole) and the Friedmann–Lemaître–Robertson–Walker (FLRW) metric for a homogeneous, isotropic universe, which forms the basis of modern cosmology.

UNESCO Nomenclature: 2211
– Physics of fields and elementary particles

Tipo

Abstract System

Disruption

Revolutionary

Utilizzo

Widespread Use

Precursors

  • Newton’s law of universal gravitation
  • Special Relativity
  • Riemannian geometry
  • Tensor calculus

Applicazioni

  • cosmology
  • black hole physics
  • gravitational lensing calculations
  • predicting gravitational waves
  • GPS accuracy

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: einstein field equations, general relativity, spacetime curvature, stress-energy tensor, metric tensor, cosmological constant, gravitation, non-linear equations

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti