A constitutive equation, or constitutive relation, is a mathematical relationship that describes how a specific material responds to external stimuli. In continuum mechanics, it connects cinematico quantities like strain to kinetic quantities like stress. For example, Hooke’s Law, [latex]\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}[/latex], is a constitutive equation for linear elastic solids, relating the stress tensor [latex]\boldsymbol{\sigma}[/latex] to the strain tensor [latex]\boldsymbol{\varepsilon}[/latex].
Constitutive Equations
Constitutive equations are essential because the fundamental laws of continuum meccanica (conservation of mass, momentum, and energy) are universal and apply to all materials. However, different materials behave differently under the same loading conditions. A steel beam, a column of water, and a piece of rubber will all respond uniquely to an applied force. Constitutive equations provide the material-specific information needed to close the system of governing equations and obtain a unique solution for a given problem. They are determined experimentally and represent a mathematical model of a material’s behavior.
The complexity of constitutive equations varies greatly. The simplest models are for linear, isotropic materials. For a linear elastic solid, Hooke’s Law relates stress and strain linearly via a fourth-order stiffness tensor [latex]\mathbf{C}[/latex]. For a Newtonian fluid, the stress is linearly related to the rate of strain. However, many real-world materials exhibit much more complex behavior. Non-linear elasticity is needed for materials like rubber that undergo large deformations. Plasticity models describe permanent deformation after a yield stress is exceeded. Viscoelastic models, used for polymers, exhibit both fluid-like and solid-like characteristics, with their response depending on the rate of loading. Developing accurate constitutive models for advanced materials like composites, biological tissues, or granular materials is a major and ongoing area of research in mechanics.
Tipo
Disruption
Utilizzo
Precursors
- Robert Hooke’s experiments on springs (‘ut tensio, sic vis’)
- Isaac Newton’s concept of viscosity in fluids
- The development of the mathematical concepts of stress and strain
- Experimental testing of material properties
Applicazioni
- material selection in engineering design based on stress-strain behavior
- simulation of non-newtonian fluids like ketchup or blood in cfd
- modeling plasticity and permanent deformation in metal forming processes
- geotechnical engineering for describing the behavior of soil and rock under load
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Related Invention, Innovation & Technical Principles