Casa » Conservation of Mass

Conservation of Mass

1757

In continuum mechanics, the principle of mass conservation states that the mass of a closed system must remain constant over time. For a fluid, this is expressed by the continuity equation. In its Eulerian differential form, it is written as [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex], where [latex]\rho[/latex] is the density and [latex]\mathbf{u}[/latex] is the velocity field.

The conservation of mass is a fundamental principle in physics, and its mathematical formulation within continuum meccanica is known as the continuity equation. This equation provides a precise statement about how the density of a material changes in space and time. The equation [latex]\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0[/latex] applies at every point within the continuum. The term [latex]\frac{\partial \rho}{\partial t}[/latex] represents the rate of change of density at a fixed point (the local or unsteady term), while the term [latex]\nabla \cdot (\rho \mathbf{u})[/latex] is the divergence of the mass flux ([latex]\rho \mathbf{u}[/latex]), representing the net rate of mass flowing out of an infinitesimal volume around that point.

The equation essentially states that if the density at a point is increasing, it must be because more mass is flowing into the infinitesimal volume than is flowing out, and vice versa. For a special case known as an incompressible flow, the density [latex]\rho[/latex] of a fluid parcel is assumed to be constant as it moves. In this case, the continuity equation simplifies significantly to [latex]\nabla \cdot \mathbf{u} = 0[/latex]. This simplified form is widely used in modeling liquids like water and in low-speed aerodynamics. The continuity equation is one of the core governing equations, alongside the conservation of momentum and energy, used in virtually all analyses in fluid dynamics and solid mechanics.

UNESCO Nomenclature: 2209
– Fluid dynamics

Tipo

Physical Law

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • The philosophical principle of conservation of matter
  • Development of vector calculus and the divergence theorem
  • Leonhard Euler’s formulation of fluid motion equations
  • Daniel Bernoulli’s work on fluid dynamics

Applicazioni

  • design of pipelines and HVAC systems to ensure proper flow rates
  • aerospace engineering for calculating air density changes around aircraft
  • hydrology for modeling river flow and groundwater movement
  • meteorology for forecasting weather patterns based on air mass movement

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: continuity equation, conservation of mass, fluid dynamics, density, velocity field, incompressible flow, divergence, mass flux

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti