Maison » Topological Space

Topological Space

1914
  • Felix Hausdorff

A topological space is an ordered pair [latex](X, \tau)[/latex], where [latex]X[/latex] is a set and [latex]\tau[/latex] is a collection of subsets of [latex]X[/latex], called open sets, satisfying three axioms: 1) The empty set [latex]\emptyset[/latex] and [latex]X[/latex] itself are in [latex]\tau[/latex]. 2) The union of any number of sets in [latex]\tau[/latex] is also in [latex]\tau[/latex]. 3) The intersection of any finite number of sets in [latex]\tau[/latex] is also in [latex]\tau[/latex].

The collection [latex]\tau[/latex] is called a topology on [latex]X[/latex]. The elements of [latex]X[/latex] are usually called points, and the subsets in [latex]\tau[/latex] are the open sets. A subset of [latex]X[/latex] is called closed if its complement is an open set. This axiomatic definition is extremely general and powerful, allowing for the study of spatial properties in a way that is independent of distance or measurement. For example, the set of real numbers [latex]\mathbb{R}[/latex] with the collection of all open intervals forms a topological space, known as the standard topology. However, many other, non-standard topologies can be defined on the same set [latex]\mathbb{R}[/latex]. The concept of a neighborhood of a point is fundamental; a neighborhood of a point [latex]x[/latex] is any subset of [latex]X[/latex] that contains an open set which in turn contains [latex]x[/latex]. This framework allows mathematicians to generalize concepts like limits and continuity from metric spaces to more abstract settings. The power of this definition lies in its ability to capture the essence of ‘closeness’ and ‘connectedness’ without relying on a metric, which makes it applicable to a vast range of mathematical and scientific problems where a notion of distance is not natural or available.

UNESCO Nomenclature: 1209
– Topology

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Georg Cantor’s work on set theory
  • Bernhard Riemann’s concept of manifolds
  • Maurice Fréchet’s introduction of metric spaces
  • Henri Poincaré’s work on analysis situs

Applications

  • defining continuity and convergence
  • general relativity
  • quantum field theory
  • data analysis (topological data analysis)
  • string theory

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: topological space, open set, axiom, Hausdorff, set theory, topology, abstract algebra, general topology

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi