The Gauss-Bonnet theorem connects the geometry of a compact two-dimensional surface to its topology. It states that the integral of the Gaussian curvature [latex]K[/latex] over the entire surface [latex]M[/latex] is equal to [latex]2\pi[/latex] times the Euler characteristic [latex]\chi(M)[/latex] of the surface. The formula is [latex]\int_M K \, dA = 2\pi \chi(M)[/latex].
The Gauss-Bonnet Theorem
- Carl Friedrich Gauss
- Pierre Ossian Bonnet
The Gauss-Bonnet theorem is a remarkable statement that provides a deep link between the local geometric properties of a surface and its global topological structure. The left side of the equation, [latex]\int_M K \, dA[/latex], involves integrating the Gaussian curvature—a quantity that can vary from point to point—over the entire surface. This is a purely geometric quantity. The right side, [latex]2\pi \chi(M)[/latex], involves the Euler characteristic, [latex]\chi(M) = V – E + F[/latex] (Vertices – Edges + Faces for any triangulation of the surface), which is a topological invariant. This means [latex]\chi(M)[/latex] does not change under continuous deformations of the surface; for example, a sphere always has [latex]\chi=2[/latex] and a torus always has [latex]\chi=0[/latex], regardless of how they are stretched or bent.
The theorem implies that no matter how you deform a surface, the total curvature must remain constant. If you create a dimple in a sphere (introducing negative curvature), you must simultaneously create areas of higher positive curvature elsewhere to keep the total integral equal to [latex]4\pi[/latex] (since [latex]\chi(sphere)=2[/latex]). For a torus, the total curvature must always be zero; any region of positive curvature must be exactly balanced by a region of negative curvature. This theorem was a precursor to more general index theorems, like the Atiyah-Singer index theorem, which relate analytical and topological invariants in higher dimensions.
Type
Disruption
Utilisation
Precursors
- Girard’s theorem on the area of spherical triangles
- Gauss’s work on intrinsic curvature (Theorema Egregium)
- Euler’s polyhedral formula (V – E + F = 2)
- Development of integral calculus
Applications
- topology (linking a geometric property, curvature, to a topological invariant, the euler characteristic)
- physics (in the context of quantum field theory and string theory)
- computer graphics (for mesh processing and analysis)
- robotique (for path planning on complex surfaces)
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
The Gauss-Bonnet Theorem
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles