Maison » Reliability Function (Survival Function)

Reliability Function (Survival Function)

1950

The reliability function, R(t), defines the probability that a system or component will perform its required function without failure for a specified time ‘t’. For systems with a constant failure rate (λ), it is described by the exponential distribution: [latex]R(t) = e^{-\lambda t}[/latex]. This function is fundamental to predicting the longevity and performance of a product.

The reliability function, also known as the survival function, is the complement of the cumulative distribution function (CDF) of failure, F(t). That is, [latex]R(t) = 1 – F(t)[/latex]. It provides a time-dependent measure of a system’s ability to remain operational. The function always starts at R(0) = 1 (100% probability of survival at time zero) and monotonically decreases towards 0 as time approaches infinity.

A key related concept is the failure rate, or hazard function, [latex]h(t)[/latex], which represents the instantaneous probability of failure at time t, given that the system has survived up to that time. The relationship is given by [latex]h(t) = f(t) / R(t)[/latex], where f(t) is the probability density function of failure. The reliability function can be derived from the hazard function as [latex]R(t) = e^{-\int_{0}^{t} h(\tau) d\tau}[/latex].

In the special but common case of the exponential distribution, the failure rate [latex]\lambda[/latex] is constant. This ‘memoryless’ property implies that the age of the component does not affect its likelihood of failing in the next instant. This model is often applied during the ‘useful life’ phase of a product’s lifecycle, after initial defects have been weeded out and before wear-out mechanisms dominate.

UNESCO Nomenclature: 1209
– Statistics

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • probability theory developed by Pascal and Fermat
  • actuarial life tables for calculating human mortality
  • work on statistical distributions by mathematicians like Poisson and Gauss
  • early quality control methods from the 1920s

Applications

  • calculating warranty periods for consumer electronics
  • scheduling preventative maintenance for industrial machinery
  • determining the probability of mission success for spacecraft
  • assessing the long-term performance of medical implants

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: reliability function, survival function, probability, failure rate, exponential distribution, R(t), hazard function, lifetime analysis

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi