Maison » Théorème de Pythagore

Théorème de Pythagore

-550
  • Pythagoras of Samos
Triangle rectangle illustrant le théorème de Pythagore en géométrie.

(generate image for illustration only)

Le théorème de Pythagore est une relation fondamentale de la géométrie euclidienne entre les trois côtés d'un triangle rectangle. Il stipule que la surface du carré dont le côté est l'hypoténuse (le côté opposé à l'angle droit) est égale à la somme des surfaces des carrés des deux autres côtés. La formule s'exprime comme suit : [latex]a^2 + b^2 = c^2[/latex].

While the theorem is named after the Greek mathematician Pythagoras, evidence suggests that the relationship was known to earlier civilizations, including the Babylonians and Egyptians, who used it for practical purposes like surveying and construction. However, the Pythagoreans are credited with the first formal proof of the theorem, elevating it from a practical observation to a mathematical certainty within a deductive system. There are hundreds of known proofs for the theorem, some geometric and some algebraic, demonstrating its deep and multifaceted nature.

The theorem is a special case of the more general law of cosines, [latex]c^2 = a^2 + b^2 – 2ab\cos(\gamma)[/latex], which relates the lengths of the sides of any triangle. When the angle [latex]\gamma[/latex] is a right angle (90 degrees or [latex]\pi/2[/latex] radians), its cosine is 0, and the formula simplifies to the Pythagorean theorem. The theorem also defines the Euclidean distance between two points in a Cartesian coordinate system. If two points have coordinates [latex](x_1, y_1)[/latex] and [latex](x_2, y_2)[/latex], the distance [latex]d[/latex] between them is given by [latex]d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}[/latex], which is a direct application of the theorem.

UNESCO Nomenclature: 1204
- Géométrie

Taper

Système abstrait

Perturbation

Fondamentaux

Usage

Utilisation généralisée

Précurseurs

  • Babylonian clay tablets (e.g., Plimpton 322) showing knowledge of Pythagorean triples
  • Egyptian rope-stretching techniques for creating right angles in construction
  • Early Greek geometric concepts of lines, angles, and areas

Applications

  • construction and carpentry (e.g., ensuring square corners)
  • navigation and triangulation for determining location
  • physics calculations involving vectors
  • computer graphics for distance calculations
  • forensic science for crime scene reconstruction

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: Pythagorean theorem, right-angled triangle, hypotenuse, Euclidean distance, geometry, trigonometry, a^2+b^2=c^2, proof.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi