A Pourbaix diagram, also known as a potential/pH diagram, is a thermodynamique chart that maps the stable equilibrium phases of an aqueous electrochemical system. It graphically shows the conditions of potential ([latex]E_H[/latex]) and pH under which a metal is immune (thermodynamically stable), passivated (forms a stable protective film), or susceptible to corrosion (forms soluble ions).
Potential-pH Diagram (Pourbaix Diagram)
- Marcel Pourbaix
Pourbaix diagrams are constructed using the Nernst equation for various possible chemical and electrochemical reactions in the system, including metal oxidation, oxide/hydroxide formation, and water stability reactions. The diagram is divided into regions by lines representing the equilibrium conditions for these reactions. There are three main types of lines: horizontal lines represent redox reactions that are pH-independent, vertical lines represent acid-base reactions that are potential-independent, and sloping lines represent reactions that depend on both pH and potential.
The diagram also includes two crucial lines representing the stability of water. Above the upper line, water is oxidized to oxygen ([latex]2H_2O \\rightarrow O_2 + 4H^+ + 4e^-[/latex]), and below the lower line, water is reduced to hydrogen ([latex]2H^+ + 2e^- \\rightarrow H_2[/latex]). The area between these two lines is the region of water stability, where most aqueous corrosion occurs.
By plotting the potential and pH of a specific environment on the diagram for a given metal, one can predict its thermodynamic tendency. The ‘corrosion’ region indicates the metal will dissolve into ions. The ‘immunity’ region indicates the metal itself is the most stable form, so corrosion is thermodynamically impossible. The ‘passivation’ region indicates that a solid, often insoluble, oxide or hydroxide film forms on the surface, which can protect the underlying metal from further corrosion. However, it’s crucial to remember that these diagrams are based on thermodynamics and do not provide information about the kinetics or rate of corrosion.
Type
Disruption
Utilisation
Precursors
- Walther Nernst’s formulation of the Nernst equation (1889)
- Josiah Willard Gibbs’ work on chemical thermodynamics and phase equilibria (1870s)
- advances in potentiometry and pH measurement techniques
Applications
- predicting corrosion behavior of metals in various environments
- designing corrosion protection strategies like cathodic protection
- geochemistry for understanding mineral stability
- hydrometallurgy for metal extraction processes
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Potential-pH Diagram (Pourbaix Diagram)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles