General relativity provided the first accurate explanation for the anomalous precession of Mercury’s perihelion. Newtonian gravity could not fully account for the slow, gradual shift in the orientation of Mercury’s elliptical orbit. Einstein’s theory correctly predicted the missing 43 arcseconds per century, attributing it to the curvature of spacetime around the Sun, a major early triumph for the theory.
Perihelion Precession of Mercury
- Urbain Le Verrier
- Albert Einstein
In the 19th century, astronomers observed that Mercury’s elliptical orbit was not stationary. Its point of closest approach to the Sun, the perihelion, was slowly advancing, or precessing. While most of this precession was explained by the gravitational tugs of other planets according to Newton’s laws, a small discrepancy of about 43 arcseconds per century remained unaccounted for. This anomaly puzzled scientists, with some proposing the existence of an undiscovered planet, Vulcan, between Mercury and the Sun.
In 1915, Albert Einstein applied his new theory of general relativity to the problem. His calculations showed that the curvature of spacetime caused by the Sun’s mass would introduce a correction to the Newtonian description of gravity. This correction perfectly accounted for the missing 43 arcseconds per century without any ad-hoc parameters. Unlike Newton’s theory, where orbits are closed ellipses (in a two-body system), general relativity predicts that orbits are not closed but trace a rosette pattern. This effect is most pronounced for objects in strong gravitational fields and with eccentric orbits, making Mercury the ideal candidate in our solar system. The successful explanation of Mercury’s perihelion precession was one of the first strong pieces of evidence that general relativity was a more accurate description of gravity than Newton’s theory.
Type
Disruption
Utilisation
Precursors
- Kepler’s laws of planetary motion
- Newton’s law of universal gravitation
- Urbain Le Verrier’s detailed calculations of planetary orbits
- Special relativity
Applications
- first major observational evidence supporting general relativity
- a precision test for general relativity and other theories of gravity
- used to constrain alternative gravity theories
- high-precision celestial mécanique calculations
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles