Maison » Differentiable Manifolds (geom)

Differentiable Manifolds (geom)

1854
  • Bernhard Riemann

A differentiable manifold is a topological space that is locally similar to Euclidean space, allowing calculus to be applied. Each point has a neighborhood that is homeomorphic to an open subset of [latex]\mathbb{R}^n[/latex]. These local coordinate systems, called charts, are related by smooth transition functions, forming an atlas that defines the manifold’s differentiable structure.

A differentiable manifold is the central object of study in differential geometry. The concept formalizes the idea of a “curved space” of any dimension. While globally a manifold can be complex (like a sphere or a torus), locally, around any point, it looks like a flat piece of Euclidean space. This local “flatness” is key, as it allows us to use the tools of multivariable calculus.

The formal definition involves a set of points M, a topology on M, and an atlas. An atlas is a collection of charts, where each chart is a pair (U, φ), with U being an open subset of M and φ being a homeomorphism from U to an open subset of [latex]\mathbb{R}^n[/latex]. For any two overlapping charts, (U, φ) and (V, ψ), the transition map [latex]\psi \circ \phi^{-1}[/latex] from [latex]\phi(U \cap V)[/latex] to [latex]\psi(U \cap V)[/latex] must be a diffeomorphism (infinitely differentiable with a differentiable inverse). This compatibility condition ensures that calculus performed in one coordinate system is consistent with calculus performed in another.

This structure allows for the definition of tangent spaces, vector fields, and differential forms on the manifold, independent of any particular coordinate system. It provides a cadre for studying geometry intrinsically, without needing to embed the space in a higher-dimensional ambient space.

UNESCO Nomenclature: 1204
– Geometry

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Euclidean geometry
  • Non-Euclidean geometries (Lobachevsky, Bolyai)
  • Theory of surfaces by Carl Friedrich Gauss
  • Coordinate systems by René Descartes
  • Early concepts of topology

Applications

  • general relativity (spacetime is modeled as a 4d lorentzian manifold)
  • robotique (configuration spaces of robots are manifolds)
  • computer graphics (representing complex surfaces)
  • string theory
  • classical mécanique (phase space is a symplectic manifold)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: manifold, topology, differentiable structure, atlas, chart, euclidean space, calculus, geometry

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi