A second-order linear hyperbolic partial differential equation that governs the propagation of various types of waves. In its simplest form, it is written as [latex]\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u[/latex], where [latex]u(\vec{x},t)[/latex] is the amplitude of the wave, [latex]c[/latex] is the wave speed, and [latex]\nabla^2[/latex] is the Laplace operator. It models phenomena like vibrating strings, sound waves, and light waves.
The Wave Equation (physics)
- Jean le Rond d’Alembert
The wave equation is the archetypal hyperbolic PDE. Unlike the heat equation, it is second-order in time, which gives rise to its oscillatory, wave-like solutions. The presence of the [latex]\frac{\partial^2 u}{\partial t^2}[/latex] term implies that acceleration is proportional to the local curvature of the function, a relationship characteristic of restorative forces like tension in a string. The constant [latex]c[/latex] represents the finite speed at which disturbances propagate through the medium.
A crucial feature of the wave equation is the principle of causality and finite propagation speed. A disturbance at a point [latex]\vec{x}_0[/latex] at time [latex]t_0[/latex] can only affect points [latex]\vec{x}[/latex] at a later time [latex]t[/latex] that are within a distance of [latex]c(t-t_0)[/latex]. This region is known as the ‘cone of influence’. Conversely, the value of the solution at [latex](\vec{x}, t)[/latex] depends only on the initial data within its ‘domain of dependence’. This contrasts sharply with the infinite propagation speed of the heat equation.
In one spatial dimension, the equation [latex]u_{tt} = c^2 u_{xx}[/latex] has a remarkably simple general solution, discovered by d’Alembert: [latex]u(x,t) = F(x-ct) + G(x+ct)[/latex]. This represents the superposition of two waves traveling in opposite directions with speed [latex]c[/latex]. The shapes of these waves, determined by the functions [latex]F[/latex] and [latex]G[/latex], are preserved as they propagate.
Tipo
Disruption
Utilización
Precursors
- newton’s laws of motion
- hooke’s law for elastic forces
- development of calculus and partial derivatives
- studies of vibrating strings by brook taylor and johann bernoulli
Aplicaciones
- acoustics and audio engineering
- electromagnetism (propagation of light and radio waves)
- seismology for modeling earthquakes
- fluid dynamics for surface waves
- general relativity for gravitational waves
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
The Wave Equation (physics)
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles