Hogar » Maxwell-Faraday Equation

Maxwell-Faraday Equation

1861
  • Michael Faraday
  • James Clerk Maxwell

This is the differential form of Faraday’s law of induction, one of Maxwell’s four equations. It states that a time-varying magnetic field ([latex]\mathbf{B}[/latex]) always accompanies a spatially varying, non-conservative electric field ([latex]\mathbf{E}[/latex]). The relationship is expressed as [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex]. This equation governs how changing magnetic fields create electric fields at a specific point in space.

The Maxwell-Faraday equation is a fundamental law of electromagnetism that describes how a changing magnetic field generates an electric field. In its differential form, [latex]\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}[/latex], it provides a localized, microscopic description of this phenomenon. Here, [latex]\nabla \times[/latex] is the curl operator, which measures the rotational tendency of a vector field. [latex]\mathbf{E}[/latex] represents the electric field, and [latex]\mathbf{B}[/latex] is the magnetic field. The term [latex]\frac{\partial \mathbf{B}}{\partial t}[/latex] is the partial derivative of the magnetic field with respect to time, signifying its rate of change at a specific point in space.

A key implication of this equation is that the induced electric field is non-conservative. A conservative vector field has a curl of zero, meaning the line integral around any closed loop is zero. Since the curl of [latex]\mathbf{E}[/latex] is non-zero in the presence of a changing magnetic field, the work done by this electric field on a charge moving in a closed loop is not zero. This non-zero work per unit charge is precisely the electromotive force (EMF) that drives current in a conductor.

This equation was James Clerk Maxwell’s generalization of Michael Faraday’s experimental findings from 1831. Faraday observed that changing magnetic flux through a circuit induced a current, but he described it in terms of flux and EMF. Maxwell reformulated this observation into a local field equation, making it a cornerstone of his unified theory of electromagnetism. It elegantly connects electricity and magnetism, showing they are not separate phenomena but two facets of a single electromagnetic field. This formulation is crucial for deriving the wave equation for electromagnetic radiation, predicting the existence of light waves, radio waves, and other forms of electromagnetic energy propagating through space.

UNESCO Nomenclature: 2205
– Electromagnetism

Tipo

Physical Law

Disruption

Foundational

Utilización

Widespread Use

Precursors

  • Hans Christian Ørsted’s discovery of the magnetic effect of electric current (1820)
  • André-Marie Ampère’s formulation of the law governing forces between currents
  • Michael Faraday’s experimental discovery of electromagnetic induction (1831)
  • The development of vector calculus

Aplicaciones

  • electric generators
  • induction motors
  • transformers
  • wireless power transfer
  • induction cooking
  • magnetic recording heads
  • particle accelerators

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: maxwell-faraday equation, differential form, curl, electric field, magnetic field, electromagnetism, induction, maxwell’s equations

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar