Hogar » Mecánica hamiltoniana

Mecánica hamiltoniana

1833
  • William Rowan Hamilton
Sala de estudio con ecuaciones de Hamilton, plumas y pergamino, que representan la mecánica hamiltoniana en física.

A reformulation of classical mecánica that uses generalized coordinates and their conjugate momenta. It is based on the Hamiltonian function, [latex]H(q, p, t)[/latex], representing the system’s total energy. The dynamics are described by Hamilton’s equations: [latex]\dot{q}_i = \frac{\partial H}{\partial p_i}[/latex] and [latex]\dot{p}_i = -\frac{\partial H}{\partial q_i}[/latex]. This estructura is central to quantum mechanics and statistical mechanics.

Hamiltonian mechanics, developed by William Rowan Hamilton, is a further abstraction of classical mechanics, building upon the Lagrangian framework. Its natural setting is phase space, an abstract space where the axes are the generalized coordinates ([latex]q_i[/latex]) and their corresponding generalized momenta ([latex]p_i = \frac{\partial L}{\partial \dot{q}_i}[/latex]). The complete state of a system at any instant is represented by a single point in this phase space.

The central function is the Hamiltonian, [latex]H(q, p, t)[/latex], which is derived from the Lagrangian via a Legendre transformation. For many common systems, the Hamiltonian is simply the total energy, [latex]H = T + V[/latex]. The system’s evolution in time is governed by a set of first-order differential equations known as Hamilton’s equations: [latex]\dot{q}_i = \frac{\partial H}{\partial p_i}[/latex] and [latex]\dot{p}_i = -\frac{\partial H}{\partial q_i}[/latex]. These equations are symmetric and often easier to work with than the second-order Euler-Lagrange equations.

A profound aspect of this formalism is its deep connection to other areas of physics. The structure of Hamiltonian mechanics is preserved under a class of transformations called canonical transformations. The time evolution of any quantity [latex]f(q, p)[/latex] can be expressed using Poisson brackets, a mathematical operation that has a direct analogue in quantum mechanics: the commutator. This makes Hamiltonian mechanics the most direct classical precursor to quantum theory.

Furthermore, Hamiltonian mechanics is the foundation of statistical mechanics. Liouville’s theorem, a direct consequence of Hamilton’s equations, states that the volume of a region in phase space is conserved as it evolves in time. This principle is crucial for understanding the behavior of large ensembles of particles, such as atoms in a gas.

UNESCO Nomenclature: 2211
– Physics

Tipo

Sistema abstracto

Disrupción

Fundacional

Utilización

Uso generalizado

Precursores

  • Mecánica lagrangiana
  • Transformación de Legendre
  • Cálculo de variaciones
  • Mecánica newtoniana

Aplicaciones

  • quantum mechanics (Schrödinger equation formulation)
  • statistical mechanics (phase space and liouville’s theorem)
  • mecánica celeste (teoría de perturbaciones)
  • teoría del control y control óptimo
  • óptica geométrica

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: hamiltonian, phase space, canonical coordinates, conjugate momentum, poisson brackets, quantum mechanics, statistical mechanics, symplectic geometry.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar