Hogar » Fundamental Theorem of Arithmetic

Fundamental Theorem of Arithmetic

1801
  • Carl Friedrich Gauss
Study room with books and chalkboard illustrating the Fundamental Theorem of Arithmetic in number theory.

This theorem states that every integer greater than 1 is either a prime number or can be uniquely represented as a product of prime numbers, disregarding the order of the factors. For example, [latex]1200 = 2^4 \times 3^1 \times 5^2[/latex]. This unique factorization is a cornerstone of number theory, providing a fundamental multiplicative structure for the integers.

The Fundamental Theorem of Arithmetic, also called the unique factorization theorem, consists of two main assertions for any integer [latex]n > 1[/latex]: first, that [latex]n[/latex] can be written as a product of prime numbers (the existence part), and second, that this product is unique, apart from the order of the factors (the uniqueness part). The existence of a prime factorization is typically proven using strong induction. The base case is that 2 is prime. For the inductive step, assume every integer up to [latex]k[/latex] has a prime factorization. For [latex]k+1[/latex], it is either prime (and we are done) or composite. If it is composite, it can be written as a product of two smaller integers, [latex]a \times b[/latex]. By the induction hypothesis, both [latex]a[/latex] and [latex]b[/latex] have prime factorizations, and their product gives a prime factorization for [latex]k+1[/latex].

The uniqueness part is more subtle and relies critically on Euclid’s Lemma, which states that if a prime [latex]p[/latex] divides a product [latex]ab[/latex], then [latex]p[/latex] must divide either [latex]a[/latex] or [latex]b[/latex]. To prove uniqueness, assume an integer [latex]n[/latex] has two different prime factorizations: [latex]n = p_1 p_2 cdots p_k = q_1 q_2 cdots q_m[/latex]. The prime [latex]p_1[/latex] divides the left side, so it must divide the right side. By Euclid’s Lemma, [latex]p_1[/latex] must divide one of the [latex]q_j[/latex]. Since all [latex]q_j[/latex] are prime, [latex]p_1[/latex] must be equal to some [latex]q_j[/latex]. We can then cancel these terms from both sides and repeat the process, eventually showing that the two factorizations must be identical. While elements of this theorem appeared in Euclid’s *Elements* (c. 300 BC), Carl Friedrich Gauss provided the first clear statement and rigorous proof in his 1801 work *Disquisitiones Arithmeticae*, solidifying its foundational role in number theory.

UNESCO Nomenclature: 1101
– Pure mathematics

Tipo

Sistema abstracto

Disrupción

Fundacional

Utilización

Uso generalizado

Precursores

  • Euclid’s proof of the infinitude of primes
  • Euclid’s Lemma
  • The concept of prime numbers and divisibility from ancient Greek mathematics
  • Development of mathematical induction as a proof technique

Aplicaciones

  • criptografía (e.g., RSA algorithm)
  • algorithms for finding the greatest common divisor (GCD)
  • solving diophantine equations
  • development of abstract algebra
  • computer science algorithms for integer factorization

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: fundamental theorem of arithmetic, prime factorization, unique factorization, number theory, integer, prime number, Euclid, Gauss, canonical representation, multiplicative structure.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar