The Platonic solids are the only five convex regular polyhedra: a regular polyhedron has congruent regular polygonal faces and the same number of faces meeting at each vertex. The five solids are the tetrahedron (4 faces), cube (6 faces), octahedron (8 faces), dodecahedron (12 faces), and icosahedron (20 faces). Their symmetry and properties have been studied since antiquity.
The Five Platonic Solids
- Theaetetus
- Plato (for philosophical association)
The Platonic solids represent a unique and finite set of three-dimensional shapes defined by their high degree of symmetry. To be a Platonic solid, a polyhedron must be convex and regular. This means all its faces must be identical (congruent) regular polygons, and the same number of faces must meet at every vertex. The proof that only five such solids can exist is a classic result in geometry. It relies on the fact that the sum of the angles of the faces meeting at any vertex must be less than 360 degrees; otherwise, the shape would flatten out. By systematically checking all regular polygons (triangles, squares, pentagons, etc.) and how many can meet at a vertex, one finds only five possibilities.
The five solids are:1. **Tetrahedron**: 4 triangular faces, 3 meeting at each vertex.2. **Cube (Hexahedron)**: 6 square faces, 3 meeting at each vertex.3. **Octahedron**: 8 triangular faces, 4 meeting at each vertex.4. **Dodecahedron**: 12 pentagonal faces, 3 meeting at each vertex.5. **Icosahedron**: 20 triangular faces, 5 meeting at each vertex.No regular polygon with six or more sides can be used, as the angle at each vertex is 120 degrees or more, and three such faces meeting at a point would sum to 360 degrees or more.
These shapes were known to the ancient Greeks, with the mathematician Theaetetus providing a mathematical description and proof of their existence. They are named “Platonic” because the philosopher Plato associated them with the classical elements in his dialogue *Timaeus*: the tetrahedron with fire, the cube with earth, the octahedron with air, the icosahedron with water, and the dodecahedron with the cosmos or aether. This philosophical connection elevated their status beyond mere geometric curiosities. Later, Johannes Kepler attempted to model the orbits of the planets using nested Platonic solids, a testament to their perceived fundamental importance in the structure of the universe.
Tipo
Disruption
Utilización
Precursors
- Pythagorean understanding of regular polygons
- Development of Euclidean geometry and proofs
- Theaetetus’s mathematical classification of regular solids
Aplicaciones
- crystallography to describe crystal shapes
- role-playing games (dice)
- molecular chemistry (e.g., dodecahedrane, icosahedral viruses)
- art and architecture (e.g., works by M.C. Escher)
- computer graphics modeling
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Historical Context
The Five Platonic Solids
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles