Hogar » Finite Element Method

Finite Element Method

1943
  • Richard Courant
  • Alexander Hrennikoff
  • Olgierd Zienkiewicz

The Finite Element Method (FEM) is a powerful numerical technique for solving complex engineering and physics problems described by partial differential equations. It works by discretizing a continuous domain into a set of smaller, simpler subdomains called ‘finite elements’. This allows for the approximate numerical solution of problems in structural analysis, heat transfer, fluid flow, and electromagnetism.

The FEM process begins with the ‘discretization’ of the problem domain into a mesh of finite elements (e.g., triangles or quadrilaterals in 2D, tetrahedra or hexahedra in 3D). Within each element, the unknown field variable (e.g., displacement) is approximated by simple polynomial functions, known as shape functions. The values of the field at the element nodes become the new unknowns of the problem.

A system of algebraic equations for the entire domain is derived, typically using a variational principle like the principle of minimum potential energy or a weighted residual método like the Galerkin method. This process generates an ‘element stiffness matrix’ [latex][k_e][/latex] for each element, which relates the nodal forces [latex]\{f_e\}[/latex] to the nodal displacements [latex]\{u_e\}[/latex] via [latex][k_e] \{u_e\} = \{f_e\}[/latex]. These individual element matrices are then systematically combined (‘assembled’) into a single global stiffness matrix [latex][K][/latex] for the entire structure. After applying known boundary conditions (forces and constraints), the resulting large system of linear equations, [latex][K] \{U\} = \{F\}[/latex], is solved numerically for the unknown global displacement vector [latex]\{U\}[/latex]. Once the nodal displacements are known, other quantities like strains and stresses can be calculated for each element.

UNESCO Nomenclature: 1208
– Numerical analysis

Tipo

Software/Algorithm

Disruption

Revolutionary

Utilización

Widespread Use

Precursors

  • Calculus of variations
  • Matrix algebra
  • The advent of digital computers
  • Theory of elasticity and continuum mecánica
  • Rayleigh-Ritz method for approximating solutions

Aplicaciones

  • structural analysis software (e.g., ansys, abaqus, nastran)
  • automotive crash simulations
  • aerospace component design and stress analysis
  • thermal analysis of electronic components
  • biomechanical simulation of implants and tissues

Patentes:

ESO

Potential Innovations Ideas

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: finite element method, fem, numerical analysis, simulation, structural analysis, partial differential equations, meshing, computational mechanics

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Related Invention, Innovation & Technical Principles

Scroll al inicio

También te puede interesar