The Cauchy stress tensor, denoted [latex]\boldsymbol{\sigma}[/latex], is a second-order tensor that completely defines the state of stress at a point inside a material. It relates the traction vector (force per unit area) [latex]\mathbf{T}[/latex] on any surface passing through that point to the surface’s normal vector [latex]\mathbf{n}[/latex] via the linear relationship [latex]\mathbf{T} = \boldsymbol{\sigma} \cdot \mathbf{n}[/latex].
Cauchy Stress Tensor
- Augustin-Louis Cauchy
The Cauchy stress tensor provides a complete description of the internal forces acting within a deformable body. Imagine an infinitesimal cube of material at a point P. Forces are exerted on each face of this cube by the surrounding material. The stress tensor [latex]\boldsymbol{\sigma}[/latex] is a 3×3 matrix whose components [latex]\sigma_{ij}[/latex] represent the stress on the i-th face in the j-th direction. The diagonal components ([latex]\sigma_{11}, \sigma_{22}, \sigma_{33}[/latex]) are normal stresses, representing pulling (tension) or pushing (compression) perpendicular to the face. The off-diagonal components ([latex]\sigma_{12}, \sigma_{23},[/latex] etc.) are shear stresses, representing forces acting parallel to the face.
A key result, known as Cauchy’s stress theorem, states that knowledge of the stress vectors on three mutually perpendicular planes is sufficient to determine the stress vector on any other plane passing through that point. This is encapsulated in the formula [latex]\mathbf{T}^{(mathbf{n})} = \boldsymbol{\sigma}^T \mathbf{n}[/latex]. Furthermore, the conservation of angular momentum requires the stress tensor to be symmetric ([latex]\sigma_{ij} = \sigma_{ji}[/latex]), which reduces the number of independent components from nine to six. This tensor is fundamental because it allows engineers to analyze the stress state at any point within an object, regardless of its orientation, and to predict whether the material will yield or fracture under applied loads by comparing the stress state to the material’s strength properties.
Tipo
Disruption
Utilización
Precursors
- Newton’s laws of motion
- Euler’s concept of pressure in fluids
- The mathematical estructura of vectors and matrices (tensors)
- Coulomb’s work on friction and soil mecánica
Aplicaciones
- structural analysis of buildings, bridges, and aircraft to predict failure
- geomechanics for analyzing stresses in rock and soil for tunneling and foundation design
- materials science for understanding material failure mechanisms like fracture and fatigue
- biomechanics for calculating stresses in bones and tissues under load
Patentes:
Potential Innovations Ideas
Membresía obligatoria de Professionals (100% free)
Debes ser miembro de Professionals (100% free) para acceder a este contenido.
DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos o de I+D
Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de plástico y metal, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico
Estamos buscando un nuevo patrocinador
¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <
Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.
o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<
Related Invention, Innovation & Technical Principles