Hogar » Fórmula de la entropía de Boltzmann

Fórmula de la entropía de Boltzmann

1877
  • Ludwig Boltzmann
Oficina científica del siglo XIX con la fórmula de la entropía de Boltzmann y las ecuaciones termodinámicas.

(generate image for illustration only)

This foundational formula connects the macroscopic termodinámica quantity of entropy (S) with the number of possible microscopic arrangements, or microstates (W), corresponding to the system’s macroscopic state. The equation, [latex]S = k_B \ln W[/latex], reveals that entropy is a measure of statistical disorder or randomness. The constant [latex]k_B[/latex] is the Boltzmann constant, linking energy at the particle level with temperature.

Boltzmann’s entropy formula provides a statistical definition for the thermodynamic concept of entropy, which was previously defined by Rudolf Clausius in terms of heat transfer ([latex]dS = \frac{\delta Q}{T}[/latex]). Boltzmann’s breakthrough was to link this macroscopic quantity to the statistical properties of the system’s constituent particles. A ‘macrostate’ is defined by macroscopic variables like pressure, volume, and temperature. A ‘microstate’ is a specific configuration of the positions and momenta of all individual particles. The key insight is that a single macrostate can be realized by an enormous number of different microstates. The quantity W, sometimes called the statistical weight or thermodynamic probability, is this number.

The formula implies that the equilibrium state of an isolated system, which is the state of maximum entropy according to the Second Law of Thermodynamics, is simply the most probable macrostate—the one with the largest number of corresponding microstates (largest W). The logarithmic relationship is crucial because it ensures that entropy is an extensive property. If you combine two independent systems, their total entropy is the sum of their individual entropies ([latex]S_{tot} = S_1 + S_2[/latex]), while the total number of microstates is the product ([latex]W_{tot} = W_1 W_2[/latex]). The logarithm turns this product into a sum: [latex]k_B \ln(W_1 W_2) = k_B \ln W_1 + k_B \ln W_2[/latex]. This formula is famously engraved on Boltzmann’s tombstone in Vienna.

UNESCO Nomenclature: 2211
- Termodinámica

Tipo

Sistema abstracto

Disrupción

Revolucionario

Utilización

Uso generalizado

Precursores

  • Rudolf Clausius’s formulation of the second law of thermodynamics and the classical definition of entropy
  • James Clerk Maxwell’s work on the statistical distribution of molecular speeds in a gas
  • Development of probability theory by mathematicians like Pierre-Simon Laplace
  • The kinetic theory of gases

Aplicaciones

  • information theory (shannon entropy)
  • black hole thermodynamics (bekenstein-hawking entropy)
  • materials science for predicting phase stability
  • computational chemistry for calculating reaction entropies
  • glass transition physics

Patentes:

NA

Posibles ideas innovadoras

Membresía obligatoria de Professionals (100% free)

Debes ser miembro de Professionals (100% free) para acceder a este contenido.

Únete ahora

¿Ya eres miembro? Accede aquí
Related to: entropy, Boltzmann, microstates, macrostates, thermodynamics, probability, statistical mechanics, Boltzmann constant.

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

DISPONIBLE PARA NUEVOS RETOS
Ingeniero Mecánico, Gerente de Proyectos, Ingeniería de Procesos o I+D
Desarrollo eficaz de productos

Disponible para un nuevo desafío a corto plazo.
Contáctame en LinkedIn
Integración de electrónica de metal y plástico, diseño a coste, GMP, ergonomía, dispositivos y consumibles de volumen medio a alto, fabricación eficiente, industrias reguladas, CE y FDA, CAD, Solidworks, cinturón negro Lean Sigma, ISO 13485 médico

Estamos buscando un nuevo patrocinador

 

¿Su empresa o institución se dedica a la técnica, la ciencia o la investigación?
> Envíanos un mensaje <

Recibe todos los artículos nuevos
Gratuito, sin spam, correo electrónico no distribuido ni revendido.

o puedes obtener tu membresía completa -gratis- para acceder a todo el contenido restringido >aquí<

Contexto histórico

(si se desconoce la fecha o no es relevante, por ejemplo "mecánica de fluidos", se ofrece una estimación redondeada de su notable aparición)

Invención, innovación y principios técnicos relacionados

Scroll al inicio

También te puede interesar