Heim » Fundamentalsatz der Arithmetik

Fundamentalsatz der Arithmetik

1801
  • Carl Friedrich Gauss
Study room with books and chalkboard illustrating the Fundamental Theorem of Arithmetic in number theory.

This theorem states that every integer greater than 1 is either a prime number or can be uniquely represented as a product of prime numbers, disregarding the order of the factors. For example, [latex]1200 = 2^4 \times 3^1 \times 5^2[/latex]. This unique factorization is a cornerstone of number theory, providing a fundamental multiplicative structure for the integers.

The Fundamental Theorem of Arithmetic, also called the unique factorization theorem, consists of two main assertions for any integer [latex]n > 1[/latex]: first, that [latex]n[/latex] can be written as a product of prime numbers (the existence part), and second, that this product is unique, apart from the order of the factors (the uniqueness part). The existence of a prime factorization is typically proven using strong induction. The base case is that 2 is prime. For the inductive step, assume every integer up to [latex]k[/latex] has a prime factorization. For [latex]k+1[/latex], it is either prime (and we are done) or composite. If it is composite, it can be written as a product of two smaller integers, [latex]a \times b[/latex]. By the induction hypothesis, both [latex]a[/latex] and [latex]b[/latex] have prime factorizations, and their product gives a prime factorization for [latex]k+1[/latex].

The uniqueness part is more subtle and relies critically on Euclid’s Lemma, which states that if a prime [latex]p[/latex] divides a product [latex]ab[/latex], then [latex]p[/latex] must divide either [latex]a[/latex] or [latex]b[/latex]. To prove uniqueness, assume an integer [latex]n[/latex] has two different prime factorizations: [latex]n = p_1 p_2 cdots p_k = q_1 q_2 cdots q_m[/latex]. The prime [latex]p_1[/latex] divides the left side, so it must divide the right side. By Euclid’s Lemma, [latex]p_1[/latex] must divide one of the [latex]q_j[/latex]. Since all [latex]q_j[/latex] are prime, [latex]p_1[/latex] must be equal to some [latex]q_j[/latex]. We can then cancel these terms from both sides and repeat the process, eventually showing that the two factorizations must be identical. While elements of this theorem appeared in Euclid’s *Elements* (c. 300 BC), Carl Friedrich Gauss provided the first clear statement and rigorous proof in his 1801 work *Disquisitiones Arithmeticae*, solidifying its foundational role in number theory.

UNESCO Nomenclature: 1101
– Pure mathematics

Typ

Abstraktes System

Unterbrechung

Grundlegendes

Verwendung

Weit verbreitete Verwendung

Vorläufersubstanzen

  • Euclid’s proof of the infinitude of primes
  • Euclid’s Lemma
  • Das Konzept der Primzahlen und der Teilbarkeit aus der antiken griechischen Mathematik
  • Entwicklung der mathematischen Induktion als Beweistechnik

Anwendungen

  • Kryptographie (e.g., RSA algorithm)
  • Algorithmen zum Finden des größten gemeinsamen Teilers (GGT)
  • Lösen diophantischer Gleichungen
  • Entwicklung der abstrakten Algebra
  • Informatikalgorithmen zur Ganzzahlfaktorisierung

Patente:

NA

Mögliche Innovationsideen

!Professionals (100% free) Mitgliedschaft erforderlich

Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.

Jetzt teilnehmen

Sie sind bereits Mitglied? Hier einloggen
Related to: fundamental theorem of arithmetic, prime factorization, unique factorization, number theory, integer, prime number, Euclid, Gauss, canonical representation, multiplicative structure.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert

VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt-, Verfahrenstechnik- oder F&E-Manager
Effektive Produktentwicklung

Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, Lean Manufacturing, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485

Wir suchen einen neuen Sponsor

 

Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <

Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft

oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<

Historischer Kontext

(wenn das Datum nicht bekannt oder nicht relevant ist, z. B. "Strömungsmechanik", wird eine gerundete Schätzung des bemerkenswerten Erscheinens angegeben)

Verwandte Erfindungen, Innovationen und technische Prinzipien

Nach oben scrollen

Das gefällt dir vielleicht auch