The Courant–Friedrichs–Lewy (CFL) condition is a necessary stability criterion for numerical solutions of hyperbolic partial differential equations using explicit time-integration schemes. It dictates that the time step size must be small enough that information does not travel further than one spatial grid cell per time step. For a 1D case, [latex]C = u \frac{\Delta t}{\Delta x} \le C_{max}[/latex], ensuring numerical stability.
Courant–Friedrichs–Lewy Condition
- Richard Courant
- Kurt Friedrichs
- Hans Lewy
The CFL condition is a fundamental concept governing the stability of explicit time-marching numerical methods. It arises from the principle that the numerical domain of dependence of a grid point must contain the physical domain of dependence. In simpler terms, for a calculation at a grid point (i) at the next time step (n+1), the numerical scheme uses information from neighboring points at the current time step (n). The CFL condition ensures that any physical phenomenon (like a pressure wave) that could have reached point (i) in the time interval [latex]\Delta t[/latex] must have originated from within that set of neighboring points.
In the formula [latex]C = \frac{u \Delta t}{\Delta x} \le C_{max}[/latex], [latex]C[/latex] is the dimensionless Courant number, [latex]u[/latex] is the maximum wave propagation speed in the system (e.g., fluid velocity plus the speed of sound for compressible flow), [latex]\Delta t[/latex] is the time step, and [latex]\Delta x[/latex] is the grid spacing. The value of [latex]C_{max}[/latex] depends on the specific numerical scheme but is often on the order of 1. If the condition is violated ([latex]C > C_{max}[/latex]), the numerical solution becomes unstable, with errors growing exponentially, leading to a non-physical, divergent result. This imposes a severe restriction on the time step size, especially in meshes with very fine cells ([latex]\Delta x[/latex] is small), making explicit methods computationally expensive for certain problems. Implicit methods, while more complex per time step, are often unconditionally stable and not subject to the CFL constraint, allowing for much larger time steps.
Typ
Disruption
Verwendung
Precursors
- Finite Difference Verfahren
- Theory of Partial Differential Equations (specifically hyperbolic equations)
- Concept of numerical stability and convergence
- Von Neumann stability analysis
Anwendungen
- ensuring stability in weather prediction models
- controlling time step size in aerodynamic simulations
- simulating wave propagation in acoustics and electromagnetics
- financial modeling of options pricing using explicit finite difference methods
- seismic wave modeling for oil and gas exploration
- simulations in plasma physics and astrophysics
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles