A constitutive equation, or constitutive relation, is a mathematical relationship that describes how a specific material responds to external stimuli. In continuum mechanics, it connects kinematisch quantities like strain to kinetic quantities like stress. For example, Hooke’s Law, [latex]\boldsymbol{\sigma} = \mathbf{C} : \boldsymbol{\varepsilon}[/latex], is a constitutive equation for linear elastic solids, relating the stress tensor [latex]\boldsymbol{\sigma}[/latex] to the strain tensor [latex]\boldsymbol{\varepsilon}[/latex].
Constitutive Equations
Constitutive equations are essential because the fundamental laws of continuum Mechanik (conservation of mass, momentum, and energy) are universal and apply to all materials. However, different materials behave differently under the same loading conditions. A steel beam, a column of water, and a piece of rubber will all respond uniquely to an applied force. Constitutive equations provide the material-specific information needed to close the system of governing equations and obtain a unique solution for a given problem. They are determined experimentally and represent a mathematical model of a material’s behavior.
The complexity of constitutive equations varies greatly. The simplest models are for linear, isotropic materials. For a linear elastic solid, Hooke’s Law relates stress and strain linearly via a fourth-order stiffness tensor [latex]\mathbf{C}[/latex]. For a Newtonian fluid, the stress is linearly related to the rate of strain. However, many real-world materials exhibit much more complex behavior. Non-linear elasticity is needed for materials like rubber that undergo large deformations. Plasticity models describe permanent deformation after a yield stress is exceeded. Viscoelastic models, used for polymers, exhibit both fluid-like and solid-like characteristics, with their response depending on the rate of loading. Developing accurate constitutive models for advanced materials like composites, biological tissues, or granular materials is a major and ongoing area of research in mechanics.
Typ
Disruption
Verwendung
Precursors
- Robert Hooke’s experiments on springs (‘ut tensio, sic vis’)
- Isaac Newton’s concept of viscosity in fluids
- The development of the mathematical concepts of stress and strain
- Experimental testing of material properties
Anwendungen
- material selection in engineering design based on stress-strain behavior
- simulation of non-newtonian fluids like ketchup or blood in cfd
- modeling plasticity and permanent deformation in metal forming processes
- geotechnical engineering for describing the behavior of soil and rock under load
Patente:
Potential Innovations Ideas
!Professionals (100% free) Mitgliedschaft erforderlich
Sie müssen ein Professionals (100% free) Mitglied sein, um auf diesen Inhalt zugreifen zu können.
VERFÜGBAR FÜR NEUE HERAUSFORDERUNGEN
Maschinenbauingenieur, Projekt- oder F&E-Manager
Kurzfristig für eine neue Herausforderung verfügbar.
Kontaktieren Sie mich auf LinkedIn
Integration von Kunststoff-Metall-Elektronik, Design-to-Cost, GMP, Ergonomie, Geräte und Verbrauchsmaterialien in mittleren bis hohen Stückzahlen, regulierte Branchen, CE und FDA, CAD, Solidworks, Lean Sigma Black Belt, medizinische ISO 13485
Wir suchen einen neuen Sponsor
Ihr Unternehmen oder Ihre Institution beschäftigt sich mit Technik, Wissenschaft oder Forschung?
> Senden Sie uns eine Nachricht <
Erhalten Sie alle neuen Artikel
Kostenlos, kein Spam, E-Mail wird nicht verteilt oder weiterverkauft
oder Sie können eine kostenlose Vollmitgliedschaft erwerben, um auf alle eingeschränkten Inhalte zuzugreifen >Hier<
Related Invention, Innovation & Technical Principles