The Zeeman effect is the splitting of an atomic spectral line into multiple components when an external static magnetic field is applied. This splitting occurs because the magnetic field interacts with the magnetic dipole moment associated with the atom’s orbital and spin angular momentum, shifting the energy levels of its electrons, a phenomenon crucial for probing atomic structure.
The Zeeman Effect
- Pieter Zeeman
Discovered by Dutch physicist Pieter Zeeman in 1896, the Zeeman effect was a pivotal observation in the development of modern physics. When an atom is placed in a magnetic field, its energy levels, which are normally degenerate (having the same energy), are split. This is because the magnetic field interacts with the magnetic moment of the atom. This magnetic moment has two primary sources: the motion of electrons orbiting the nucleus (orbital angular momentum) and the intrinsic quantum property of electrons known as spin (spin angular momentum). The interaction lifts the degeneracy of states with different magnetic quantum numbers.
When an electron transitions between these split energy levels, it emits or absorbs a photon. Since there are now multiple possible final energy states, a single spectral line, corresponding to a transition in the absence of a field, splits into several distinct lines. The spacing and polarization of these lines provide detailed information about the atom’s electronic structure, including its angular momentum quantum numbers. Hendrik Lorentz provided an early classical explanation, but a complete understanding required the advent of quantum 力学 and the concept of electron spin. The effect is categorized into the ‘normal’ Zeeman effect (for atoms with zero total spin) and the more common ‘anomalous’ Zeeman effect (for atoms with non-zero spin).
类型
中断
使用方法
前体
- Michael Faraday’s work on electromagnetism and the Faraday effect
- James Clerk Maxwell’s equations of electromagnetism
- the development of high-resolution 光谱学 by Kirchhoff and Bunsen
- Hendrik Lorentz’s classical electron theory
- the discovery of the electron by J.J. Thomson
应用
- nuclear magnetic resonance (NMR) spectroscopy
- magnetic resonance imaging (MRI)
- electron spin resonance (esr) spectroscopy
- atomic absorption spectroscopy (AAS) for elemental analysis
- astrophysical measurements of stellar and solar magnetic fields
- laser cooling and trapping of atoms
专利:
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
相关发明、创新和技术原理