» 波粒二象性

波粒二象性

1924
  • Louis de Broglie
  • Albert Einstein
  • Niels Bohr
展示量子物理学中波粒二象性的实验室实验。

All quantum entities, such as photons and electrons, exhibit both particle and wave properties. Depending on the experimental setup, they can behave like a localized particle or a distributed wave. The de Broglie hypothesis states that any particle with momentum [latex]p[/latex] has an associated wavelength [latex]\lambda = h/p[/latex], where [latex]h[/latex] is Planck’s constant.

Wave-particle duality is a cornerstone of quantum mechanics, resolving the classical dichotomy between particles and waves. The concept was first seriously considered for light, which exhibits wave-like phenomena such as diffraction and interference (as shown by Thomas Young’s double-slit experiment) and particle-like behavior in the photoelectric effect (explained by Einstein). In 1924, Louis de Broglie, in his PhD thesis, proposed that this duality was universal, applying to matter as well as light. He hypothesized that any particle has a characteristic wavelength inversely proportional to its momentum.

This radical idea was experimentally confirmed in 1927 by Clinton Davisson and Lester Germer, and independently by George Paget Thomson, who observed electron diffraction patterns when electrons were scattered by a nickel crystal. This proved that electrons, previously considered purely particles, also have wave-like properties. The duality is encapsulated in the de Broglie relation [latex]\lambda = h/p[/latex]. For macroscopic objects, the momentum [latex]p[/latex] is so large that the wavelength [latex]\lambda[/latex] is infinitesimally small and undetectable, which is why we do not observe wave-like behavior in everyday objects. Niels Bohr’s principle of complementarity states that the wave and particle aspects of a quantum object are complementary; an experiment can reveal one aspect or the other, but not both simultaneously.

UNESCO Nomenclature: 2210
- 量子物理学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • Thomas Young’s double-slit experiment (1801)
  • Einstein’s explanation of the photoelectric effect (1905)
  • 玻尔原子模型(1913年)
  • 康普顿散射(1923年)

应用

  • 电子显微镜
  • 中子衍射
  • 量子计算(量子位)
  • 半导体物理学
  • 氦原子显微镜

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: wave-particle duality, de Broglie wavelength, complementarity, electron diffraction, quantum mechanics, double-slit experiment, photon, electron.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢