The Claude process improves upon the Hampson-Linde cycle by incorporating an expansion engine or turbine. A portion of the compressed gas does work in an expander, causing a much larger temperature drop (nearly isentropic expansion) than Joule-Thomson expansion alone. This provides more efficient cooling, making it the dominant method for large-scale gas liquefaction and separation today.
The Claude Process for Liquefaction
- Georges Claude
Georges Claude recognized the 热力学 inefficiency of relying solely on the isenthalpic Joule-Thomson effect. He reasoned that making the gas perform external work during expansion would extract more energy and thus produce a greater cooling effect. In his system, the main stream of high-pressure gas is split. One part goes to an expansion engine, where it cools significantly while producing work. This extremely cold gas is then used to pre-cool the other part of the high-pressure stream in a heat exchanger. This second stream then undergoes a final Joule-Thomson expansion to produce the liquid. By combining the bulk cooling from the expander with the final-stage liquefaction from the J-T valve, the Claude cycle achieves higher efficiency and can operate at lower initial pressures than the Linde cycle. The work produced by the expander can also be recovered to help power the initial compressor, further improving overall efficiency. This principle is fundamental to virtually all modern large-scale cryogenic plants.
类型
中断
使用方法
前体
- Hampson-Linde Cycle
- Brayton cycle (thermodynamic basis for the expansion engine)
- Joule-Thomson effect
- Development of reliable high-speed expansion engines and turbines
应用
- large-scale industrial air separation units (ASUs)
- production of liquid nitrogen, oxygen, and argon
- helium and hydrogen liquefaction plants
- liquefied natural gas (LNG) production
- turboexpanders in natural gas processing
专利:
- FR324949A
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
相关发明、创新和技术原理