» 素数定理

素数定理

1896
  • Jacques Hadamard
  • Charles-Jean de la Vallée Poussin
Vintage office with mathematical papers and antique calculator related to prime number theory.

The Prime Number Theorem describes the asymptotic distribution of prime numbers among the integers. It states that the prime-counting function [latex]\pi(x)[/latex], which gives the number of primes less than or equal to [latex]x[/latex], is asymptotically equivalent to [latex]x / \ln(x)[/latex]. Formally, [latex]\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1[/latex]. This provides a fundamental link between primes and the natural logarithm.

The Prime Number Theorem (PNT) is a cornerstone of number theory that provides an approximate description of how prime numbers are distributed. The prime-counting function, [乳胶]\pi(x)[/latex], is a step function that jumps by 1 at each prime number. While the exact location of primes appears random, the PNT reveals a regular asymptotic behavior. The theorem doesn’t say that the difference between [latex]\pi(x)[/latex] and [latex]x/\ln(x)[/latex] is small, but rather that their ratio approaches 1 as [latex]x[/latex] becomes arbitrarily large. This means that for a large number [latex]x[/latex], the probability that a randomly chosen integer near [latex]x[/latex] is prime is about [latex]1/\ln(x)[/latex].

The idea was first conjectured in the late 18th century by Adrien-Marie Legendre (1798) and Carl Friedrich Gauss (1792), based on empirical evidence from tables of primes. They both proposed that [latex]\pi(x)[/latex] is approximately [latex]x/(\ln(x) – C)[/latex] for some constant C. However, proving this relationship required significant advances in mathematics, particularly in complex analysis. The first rigorous proofs were independently achieved by Jacques Hadamard and Charles-Jean de la Vallée Poussin in 1896. Their proofs were non-elementary, relying crucially on the properties of the Riemann zeta function in the complex plane, specifically showing it has no zeros on the line where the real part is 1.

UNESCO Nomenclature: 1208
– Number theory

类型

抽象系统

中断

实质性

使用方法

广泛使用

前体

  • Euclid’s proof of the infinitude of primes (c. 300 BC)
  • Euler’s product formula connecting primes and the zeta function (1737)
  • 数学家编制的素数表
  • Legendre’s conjecture on prime density (1798)
  • Gauss’s conjecture on the logarithmic integral (1792)
  • Chebyshev’s work providing bounds for [latex]\pi(x)[/latex] (1852)
  • Riemann’s 1859 paper on the zeta function

应用

  • 解析数论
  • 加密 (e.g., estimating the density of suitable primes for RSA)
  • 用于分析涉及素数的算法的理论计算机科学
  • 黎曼假设研究
  • 筛分法的发展

专利:

    潜在的创新想法

    级别需要会员

    您必须是!!等级!!会员才能访问此内容。

    立即加入

    已经是会员? 在此登录
    Related to: prime number theorem, prime-counting function, asymptotic distribution, number theory, primes, Jacques Hadamard, Charles-Jean de la Vallée Poussin, Gauss, Legendre, analytic number theory.

    发表回复

    您的邮箱地址不会被公开。 必填项已用 * 标注

    迎接新挑战
    机械工程师、项目、工艺工程师或研发经理
    有效的产品开发

    可在短时间内接受新的挑战。
    通过 LinkedIn 联系我
    塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

    我们正在寻找新的赞助商

     

    您的公司或机构从事技术、科学或研究吗?
    > 给我们发送消息 <

    接收所有新文章
    免费,无垃圾邮件,电子邮件不分发也不转售

    或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

    历史背景

    (如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

    相关发明、创新和技术原理

    滚动至顶部

    你可能还喜欢