» 生物材料中的分子自组装

生物材料中的分子自组装

1990
展示生物医学应用生物材料分子自组装的实验室场景。

(generate image for illustration only)

Molecular self-assembly is a ‘bottom-up’ process where molecules spontaneously organize into ordered structures without external guidance. This phenomenon, driven by non-covalent interactions like hydrogen bonds, hydrophobic effects, and van der Waals forces, is fundamental in biology (e.g., protein folding, lipid bilayer formation). In biomaterials, it is harnessed to create complex, nanostructured materials like hydrogels and nanofibers for biomedical applications.

Self-assembly provides a powerful paradigm for creating biomaterials that mimic the hierarchical complexity of biological tissues. The process is thermodynamically driven, seeking a minimum Gibbs free energy state. The design begins with molecular building blocks, often amphiphilic molecules (containing both hydrophilic and hydrophobic parts) such as block copolymers or peptide amphiphiles (PAs). When placed in an aqueous environment above a critical concentration, these molecules arrange themselves to minimize the unfavorable contact between their hydrophobic segments and water. This can lead to various nanostructures, including spherical micelles, cylindrical nanofibers, or planar bilayers, with the final morphology dictated by molecular geometry and packing parameters. A key advantage is the ability to encode biological function directly into the building blocks. For example, a PA can be designed with a peptide sequence containing the RGD motif, a well-known cell adhesion ligand. Upon self-assembly into nanofibers, this motif is displayed on the fiber surface, creating a scaffold that actively promotes cell attachment. These systems are often dynamic and responsive. A change in pH, temperature, or ionic strength can trigger a structural transition, allowing for the creation of ‘smart’ materials. For instance, a self-assembling peptide solution can be designed to be liquid for easy injection but form a solid 水凝胶 scaffold at body temperature, entrapping cells and drugs at a target site for regenerative medicine applications.

UNESCO Nomenclature: 2209
– Polymer chemistry

类型

化学工艺

中断

基础

使用方法

新兴技术

前体

  • 了解非共价力(氢键、范德华力)
  • 发现细胞膜的脂质双层结构
  • 研究蛋白质折叠和四级结构
  • 聚合物化学的发展,特别是嵌段共聚物
  • 莱恩、佩德森和克拉姆在超分子化学领域获得诺贝尔奖的作品

应用

  • 制造用于组织工程的模拟天然细胞外基质的纳米纤维支架
  • 用于药物输送和细胞封装的可注射水凝胶的开发
  • creation of responsive ‘smart’ materials that change properties in response to stimuli like ph or temperature
  • 形成纳米载体(如胶束和囊泡)用于靶向治疗
  • 防止生物污染的表面涂层

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: self-assembly, bottom-up, supramolecular chemistry, non-covalent interactions, hydrogel, nanofiber, amphiphile, block copolymer, smart material, peptide amphiphile.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

1970
1980
1980
1990
1994
1970
1974-11-15
1980
1986
1991
2015-09-14

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢