» Logistic Regression

Logistic Regression

1960
  • David Cox
Statistician analyzing logistic regression data for medical and financial applications.

A regression model for a categorical, typically binary, dependent variable. Instead of modeling the outcome directly, it models the probability of the outcome using the logistic (sigmoid) function. The model predicts the log-odds of the event as a linear combination of the independent variables: [latex]\ln(\frac{p}{1-p}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p[/latex], where p is the probability of the event.

Logistic regression is a fundamental algorithm for binary classification problems. It is a type of Generalized Linear Model (GLM) that extends the ideas of linear regression to cases where the outcome variable is not continuous. Applying linear regression directly to a binary (0/1) outcome is problematic because it can produce predicted probabilities outside the logical [0, 1] range and violates the OLS assumption of constant error variance.

Logistic regression solves this by using a link function to transform the outcome. It models the logarithm of the odds, or ‘logit’, as a linear function of the predictors. The odds are the ratio of the probability of success ([latex]p[/latex]) to the probability of failure ([latex]1-p[/latex]). This transformation, [latex]\text{logit}(p) = \ln(p/(1-p))[/latex], maps the probability from the range [0, 1] to the entire real number line [latex](-\infty, +\infty)[/latex], making it suitable for a linear model.

To get back to a probability, one applies the inverse of the logit function, which is the logistic or sigmoid function: [latex]p = \frac{e^{\beta_0 + \beta_1 x_1 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots}}[/latex]. Unlike linear regression, the parameters ([latex]\beta[/latex]) are not estimated using least squares. Instead, they are typically found using Maximum Likelihood Estimation (MLE), an iterative process that finds the parameter values that maximize the likelihood of observing the actual data. The model can be extended to handle multi-class problems through multinomial logistic regression.

UNESCO Nomenclature: 1209
- 统计资料

类型

软件/算法

中断

实质性

使用方法

广泛使用

前体

  • Linear regression
  • Probability theory (Bernoulli distribution)
  • Maximum likelihood estimation (developed by R.A. Fisher)
  • Probit model (an earlier model for binary outcomes)
  • The concept of generalized linear models

应用

  • medical diagnosis (e.g., predicting disease presence based on symptoms)
  • credit scoring and financial risk assessment
  • spam detection in email clients
  • 顾客 流失率预测 in telecommunications and subscription services
  • election outcome prediction

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: logistic regression, classification, binary outcome, sigmoid function, log-odds, maximum likelihood estimation, machine learning, predictive modeling, generalized linear model, categorical data.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢