» 拉普拉斯方程

拉普拉斯方程

1780
  • Pierre-Simon Laplace
在历史悠久的实验室环境中求解拉普拉斯方程的数学家。

A second-order linear elliptic 偏微分 equation that describes systems in a steady-state or equilibrium condition. It is written as [latex]nabla^2 u = 0[/latex] or [latex]Delta u = 0[/latex], where [latex]nabla^2[/latex] (or [latex]Delta[/latex]) is the Laplace operator. Solutions, called harmonic functions, are the smoothest possible functions and represent potentials in fields like electrostatics, gravitation, and fluid flow.

Laplace’s equation is the canonical elliptic PDE. It arises in numerous physical contexts where a quantity is in equilibrium and its value at a point is the average of its values in the surrounding neighborhood. This averaging property is a defining characteristic of its solutions, known as harmonic functions. A direct consequence is the ‘maximum principle’ for harmonic functions, which states that a non-constant solution cannot attain its maximum or minimum value in the interior of its domain; these extrema must lie on the boundary. This prevents, for example, a hot spot from existing in a region of steady-state heat flow unless there is a source there (which would violate [latex]nabla^2 u = 0[/latex]).

Solutions to Laplace’s equation are infinitely differentiable (analytic) even if the boundary conditions are not. This is a remarkable smoothing property, even stronger than that of the 热方程. The problem of finding a solution to Laplace’s equation in a domain given the values of the solution on the boundary is known as the Dirichlet problem. The related Neumann problem specifies the normal derivative on the boundary.

Unlike the time-dependent heat and wave equations, Laplace’s equation is typically solved for boundary value problems, where the entire boundary of a spatial domain influences the solution at every interior point simultaneously. This ‘global’ dependence contrasts with the causal, time-marching nature of parabolic and hyperbolic equations.

UNESCO Nomenclature: 1208
- 数学物理

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • newton’s law of universal gravitation
  • coulomb’s law of electrostatics
  • 拉格朗日的势场概念
  • 多元微积分和拉普拉斯算子的发展

应用

  • 静电学用于计算无电荷区域的电势
  • 引力用于确定重力势能
  • 稳态热传导
  • 不可压缩、无旋流体流动
  • 描述肥皂膜在金属丝框架上拉伸的形状

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: laplace’s equation, elliptic pde, harmonic function, potential theory, steady-state, electrostatics, boundary value problem, dirichlet problem.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢