» 玻尔兹曼熵公式

玻尔兹曼熵公式

1877
  • Ludwig Boltzmann
19 世纪的科学办公室与玻尔兹曼的熵公式和热力学方程。

(generate image for illustration only)

This foundational formula connects the macroscopic 热力学 quantity of entropy (S) with the number of possible microscopic arrangements, or microstates (W), corresponding to the system’s macroscopic state. The equation, [latex]S = k_B \ln W[/latex], reveals that entropy is a measure of statistical disorder or randomness. The constant [latex]k_B[/latex] is the Boltzmann constant, linking energy at the particle level with temperature.

Boltzmann’s entropy formula provides a statistical definition for the thermodynamic concept of entropy, which was previously defined by Rudolf Clausius in terms of heat transfer ([latex]dS = \frac{\delta Q}{T}[/latex]). Boltzmann’s breakthrough was to link this macroscopic quantity to the statistical properties of the system’s constituent particles. A ‘macrostate’ is defined by macroscopic variables like pressure, volume, and temperature. A ‘microstate’ is a specific configuration of the positions and momenta of all individual particles. The key insight is that a single macrostate can be realized by an enormous number of different microstates. The quantity W, sometimes called the statistical weight or thermodynamic probability, is this number.

The formula implies that the equilibrium state of an isolated system, which is the state of maximum entropy according to the Second Law of Thermodynamics, is simply the most probable macrostate—the one with the largest number of corresponding microstates (largest W). The logarithmic relationship is crucial because it ensures that entropy is an extensive property. If you combine two independent systems, their total entropy is the sum of their individual entropies ([latex]S_{tot} = S_1 + S_2[/latex]), while the total number of microstates is the product ([latex]W_{tot} = W_1 W_2[/latex]). The logarithm turns this product into a sum: [latex]k_B \ln(W_1 W_2) = k_B \ln W_1 + k_B \ln W_2[/latex]. This formula is famously engraved on Boltzmann’s tombstone in Vienna.

UNESCO Nomenclature: 2211
- 热力学

类型

抽象系统

中断

革命

使用方法

广泛使用

前体

  • Rudolf Clausius’s formulation of the second law of thermodynamics and the classical definition of entropy
  • James Clerk Maxwell’s work on the statistical distribution of molecular speeds in a gas
  • Development of probability theory by mathematicians like Pierre-Simon Laplace
  • The kinetic theory of gases

应用

  • information theory (shannon entropy)
  • black hole thermodynamics (bekenstein-hawking entropy)
  • materials science for predicting phase stability
  • computational chemistry for calculating reaction entropies
  • glass transition physics

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: entropy, Boltzmann, microstates, macrostates, thermodynamics, probability, statistical mechanics, Boltzmann constant.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢