» 仿生多样性

仿生多样性

1900
在办公室分析与仿射变体相关的多项式的数学家。

(generate image for illustration only)

仿射变换是仿射空间中点的集合,其坐标是一组有限多项式的公共零点。对于多项式环 [latex]k[x_1, \dots, x_n][/latex] 中的一组多项式 [latex]S = \{f_1, \dots, f_k\}[/latex], 相应的仿射变换是 [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex].它是经典代数几何的核心研究对象。

An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.

The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.

UNESCO Nomenclature: 1101
– Algebra

类型

抽象系统

中断

基础

使用方法

广泛使用

前体

  • analytic geometry (descartes, fermat)
  • theory of polynomial rings (hilbert, noether)
  • ideal theory (dedekind, krull)
  • elimination theory (sylvester, cayley)

应用

  • 加密 (elliptic curve cryptography)
  • robotics (solving inverse kinematics equations)
  • coding theory (algebraic geometry codes)
  • computer-aided geometric design (cagd)
  • statistics (algebraic statistics)

专利:

NA

潜在的创新想法

级别需要会员

您必须是!!等级!!会员才能访问此内容。

立即加入

已经是会员? 在此登录
Related to: affine variety, polynomial equations, zero-set, algebraic set, commutative algebra, Zariski topology, ideal, classical algebraic geometry.

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

迎接新挑战
机械工程师、项目、工艺工程师或研发经理
有效的产品开发

可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485

我们正在寻找新的赞助商

 

您的公司或机构从事技术、科学或研究吗?
> 给我们发送消息 <

接收所有新文章
免费,无垃圾邮件,电子邮件不分发也不转售

或者您可以免费获得完整会员资格以访问所有受限制的内容>这里<

历史背景

(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。

相关发明、创新和技术原理

滚动至顶部

你可能还喜欢