仿射变换是仿射空间中点的集合,其坐标是一组有限多项式的公共零点。对于多项式环 [latex]k[x_1, \dots, x_n][/latex] 中的一组多项式 [latex]S = \{f_1, \dots, f_k\}[/latex], 相应的仿射变换是 [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex].它是经典代数几何的核心研究对象。

(generate image for illustration only)
仿射变换是仿射空间中点的集合,其坐标是一组有限多项式的公共零点。对于多项式环 [latex]k[x_1, \dots, x_n][/latex] 中的一组多项式 [latex]S = \{f_1, \dots, f_k\}[/latex], 相应的仿射变换是 [latex]V(S) = \{x \in k^n | f(x) = 0 \text{ for all } f \in S\}[/latex].它是经典代数几何的核心研究对象。
An affine variety is the most fundamental object in classical algebraic geometry, directly generalizing the geometric idea of a solution set to a system of equations. The polynomials are defined over a field [latex]k[/latex], which is often taken to be algebraically closed, such as the field of complex numbers [latex]\mathbb{C}[/latex], to ensure a rich supply of points. The set of all affine varieties in a given affine space [latex]k^n[/latex] forms the closed sets of a topology, known as the Zariski topology. This topology is quite different from more familiar topologies like the Euclidean topology; for instance, it is not Hausdorff.
The crucial insight is the connection between these geometric objects (varieties) and algebraic objects (ideals in a polynomial ring). Specifically, every variety [latex]V(S)[/latex] corresponds to an ideal [latex]I(V(S))[/latex], which consists of all polynomials that vanish on every point of the variety. This correspondence is made precise by Hilbert’s Nullstellensatz, which establishes a bijection between affine varieties and radical ideals in the polynomial ring [latex]k[x_1, \dots, x_n][/latex]. This dictionary between algebra and geometry allows geometric problems to be translated into the language of commutative algebra, where powerful tools can be applied, and vice versa. For example, the dimension of a variety can be defined algebraically using the Krull dimension of its coordinate ring.
迎接新挑战
机械工程师、项目、工艺工程师或研发经理
可在短时间内接受新的挑战。
通过 LinkedIn 联系我
塑料金属电子集成、成本设计、GMP、人体工程学、中高容量设备和耗材、精益制造、受监管行业、CE 和 FDA、CAD、Solidworks、精益西格玛黑带、医疗 ISO 13485
仿生多样性
(如果日期不详或不相关,例如 "流体力学",则对其显著出现的时间作了四舍五入的估计)。
相关发明、创新和技术原理
{{标题}}
{%,如果摘录 %}{{ 摘录 | truncatewords:55 }}
{% endif %}