An empirical formula that describes how the available capacity of a battery decreases as the rate of discharge increases. The law is stated as [latex]C_p = I^k t[/latex], where [latex]C_p[/latex] is the capacity at a one-ampere discharge rate, [latex]I[/latex] is the discharge current, [latex]t[/latex] is the discharge time, and [latex]k[/latex] is the Peukert constant, specific to the battery type. It quantifies the inefficiency at high loads.
Peukert’s Law
- Wilhelm Peukert
Peukert’s law provides a more accurate picture of battery capacity than the simple amp-hour rating, which is typically specified at a low, constant discharge rate. The law accounts for the fact that at high discharge rates, the battery becomes less efficient. This inefficiency stems from several factors. Firstly, the internal resistance of the battery causes energy to be lost as heat, a loss that increases with the square of the current ([latex]P_{loss} = I^2R[/latex]). This wasted energy is unavailable to the load.
Secondly, the electrochemical processes within the battery have finite speeds. At high discharge rates, the chemical reactions cannot keep pace, and the diffusion of ions within the electrolyte becomes a bottleneck. This leads to a depletion of reactants near the electrodes’ surfaces, causing the voltage to drop prematurely and cutting off the discharge before all the active material has been utilized. The unused material means the effective capacity delivered is lower.
The Peukert constant, [latex]k[/latex], is determined empirically and reflects how much a battery is affected by high discharge rates. A value of [latex]k[/latex] close to 1 indicates an ideal battery that is not significantly affected by the discharge rate. Lead-acid batteries have a relatively high [latex]k[/latex] (typically 1.1 to 1.3), while modern lithium-ion batteries have a [latex]k[/latex] much closer to 1 (e.g., 1.05), indicating their superior performance under heavy loads.
Tipo
Disruption
Utilizzo
Precursors
- Ohm’s Law and the concept of internal resistance
- Development of practical, high-capacity batteries like the lead-acid cell
- The need for predictable performance in industrial applications like electric traction and lighting
- Experimental work on battery discharge curves
Applicazioni
- battery management systems (BMS) for accurate state-of-charge estimation
- designing and sizing battery banks for off-grid solar systems
- predicting the range of electric vehicles under different driving conditions
- modeling battery performance in uninterruptible power supplies (UPS)
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Historical Context
Peukert’s Law
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles