Casa » Lagrangian and Eulerian Specifications (fluids)

Lagrangian and Eulerian Specifications (fluids)

1788
  • Joseph-Louis Lagrange
  • Leonhard Euler

These are two ways to describe motion in continuum mechanics:

  • the Lagrangian specification follows individual material particles, tracking their properties over time, like watching a specific car in traffic
  • the Eulerian specification focuses on fixed points in space, observing the properties (velocity, density) of whatever particles pass through those points, like a traffic camera observing a fixed intersection.

In the Lagrangian description, the motion of a continuum is described by tracking the path of each individual particle. The position of a particle [latex]\mathbf{X}[/latex] in the initial configuration (at time [latex]t_0[/latex]) is used as its label. Its position at a later time [latex]t[/latex] is given by a function [latex]\mathbf{x} = \boldsymbol{\chi}(\mathbf{X}, t)[/latex]. Physical properties like velocity and acceleration are then calculated by taking time derivatives of this function while keeping [latex]\mathbf{X}[/latex] constant. This approach is intuitive as it mirrors how we observe individual objects. It is the natural struttura for solid meccanica, where material points are tracked as the body deforms.

Conversely, the Eulerian description focuses on what happens at fixed locations in space. Instead of tracking particles, we define a field for each physical property as a function of position [latex]\mathbf{x}[/latex] and time [latex]t[/latex]. For example, the velocity field is given by [latex]\mathbf{v} = \mathbf{v}(\mathbf{x}, t)[/latex], which represents the velocity of whichever particle happens to be at point [latex]\mathbf{x}[/latex] at time [latex]t[/latex]. This perspective is generally more convenient for fluid dynamics. The acceleration of a fluid particle in the Eulerian frame is described by the material derivative, [latex]D\mathbf{v}/Dt = \partial \mathbf{v}/\partial t + (\mathbf{v} \cdot \nabla)\mathbf{v}[/latex], which includes both the local acceleration at a point and the convective acceleration due to the particle moving to a new location with a different velocity.

UNESCO Nomenclature: 2209
– Fluid dynamics

Tipo

Abstract System

Disruption

Foundational

Utilizzo

Widespread Use

Precursors

  • Newtonian mechanics
  • Calculus of variations
  • Kinematics of rigid bodies
  • Euler’s earlier work on fluid motion

Applicazioni

  • computational fluid dynamics (CFD) solvers often use an eulerian grid
  • solid mechanics and finite element analysis typically use a lagrangian description
  • weather forecasting models use an eulerian framework to describe atmospheric properties at fixed locations
  • particle tracking velocimetry (PTV) is a lagrangian measurement technique

Brevetti:

QUELLO

Potential Innovations Ideas

Livelli! Iscrizione richiesta

Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!

Iscriviti ora

Siete già membri? Accedi
Related to: lagrangian, eulerian, flow field, material derivative, frame of reference, fluid dynamics, solid mechanics, kinematics

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

DISPONIBILE PER NUOVE SFIDE
Ingegnere meccanico, responsabile di progetto o di ricerca e sviluppo
Sviluppo efficace del prodotto

Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Integrazione di componenti elettronici in plastica e metallo, progettazione in base ai costi, GMP, ergonomia, dispositivi e materiali di consumo di medio-alto volume, settori regolamentati, CE e FDA, CAD, Solidworks, Lean Sigma Black Belt, ISO 13485 in ambito medico

Stiamo cercando un nuovo sponsor

 

La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <

Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta

oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<

Related Invention, Innovation & Technical Principles

Torna in alto

Potrebbe anche piacerti