It is impossible to simultaneously know with perfect accuracy certain pairs of complementary physical properties of a particle. The most common example is the position [latex]x[/latex] and momentum [latex]p[/latex]. The principle states that the product of their uncertainties, [latex]\Delta x[/latex] and [latex]\Delta p[/latex], must be greater than or equal to a specific value: [latex]\Delta x \Delta p \ge \frac{\hbar}{2}[/latex].
Heisenberg Uncertainty Principle
- Werner Heisenberg
The Heisenberg Uncertainty Principle is a fundamental tenet of quantum meccanica, not a statement about the limitations of measurement technology. It reflects an inherent property of quantum systems. The principle arises from the wave-like nature of all quantum objects. A particle’s position and momentum are described by its wavefunction. A wavefunction that is highly localized in space (small [latex]\Delta x[/latex]) is necessarily composed of a wide superposition of many different momentum waves, resulting in a large uncertainty in momentum (large [latex]\Delta p[/latex]). Conversely, a wavefunction with a well-defined momentum (small [latex]\Delta p[/latex]) must be a spatially spread-out wave, leading to a large uncertainty in position (large [latex]\Delta x[/latex]).
The principle applies to any pair of ‘conjugate variables,’ which are related through Fourier transforms in the mathematical formalism of quantum mechanics. Another important pair is energy ([latex]E[/latex]) and time ([latex]t[/latex]), with the relation [latex]\Delta E \Delta t \ge \frac{\hbar}{2}[/latex]. This implies that the energy of a state that exists for only a short time cannot be precisely determined. This has profound consequences, such as allowing for the temporary creation of ‘virtual particles’ in quantum field theory, which mediate fundamental forces. The uncertainty principle fundamentally limits the determinism envisioned by classical physics, replacing it with a probabilistic description of nature at the smallest scales.
Tipo
Disruption
Utilizzo
Precursors
- Matrix mechanics (1925)
- Wave mechanics (Schrödinger, 1926)
- Fourier analysis
- Born rule (probabilistic interpretation of wavefunction, 1926)
Applicazioni
- understanding the stability of atoms
- explaining quantum tunneling
- estimating the size and energy of atomic ground states
- fundamental limits in quantum measurement and elaborazione del segnale
- quantum crittografia
Brevetti:
Potential Innovations Ideas
Livelli! Iscrizione richiesta
Per accedere a questo contenuto devi essere un membro di !Professionals (100% free)!
DISPONIBILE PER NUOVE SFIDE
Mechanical Engineer, Project, Process Engineering or R&D Manager
Disponibile per una nuova sfida con breve preavviso.
Contattami su LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Stiamo cercando un nuovo sponsor
La tua azienda o istituzione si occupa di tecnica, scienza o ricerca?
> inviaci un messaggio <
Ricevi tutti i nuovi articoli
Gratuito, no spam, email non distribuita né rivenduta
oppure puoi ottenere la tua iscrizione completa -gratuitamente- per accedere a tutti i contenuti riservati >Qui<
Historical Context
Heisenberg Uncertainty Principle
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles