The von Mises yield criterion predicts that yielding of a ductile material begins when the second deviatoric stress invariant, [latex]J_2[/latex], reaches a critical value. It is often expressed in terms of the von Mises stress, [latex]\sigma_v[/latex], a scalar value that must be less than the material’s yield strength, [latex]\sigma_y[/latex]. Yielding occurs when [latex]\sigma_v = \sigma_y[/latex].
Von Mises Yield Criterion
- Richard von Mises
- Maksymilian Tytus Huber
The von Mises yield criterion, also known as the maximum distortion energy criterion, is a widely used model for predicting the onset of plastic deformation in ductile materials. It postulates that yielding begins when the elastic strain energy of distortion per unit volume in a material reaches a critical value. This is distinct from the hydrostatic energy (associated with volume change), which is assumed not to contribute to yielding in ductile metals.
Mathematically, this is equivalent to stating that the second invariant of the deviatoric stress tensor, [latex]J_2[/latex], reaches a constant value. The deviatoric stress tensor is the total stress tensor minus its hydrostatic component. The criterion is often expressed through the von Mises equivalent stress, [latex]\sigma_v[/latex], which is a scalar combination of the six components of the stress tensor. For a general 3D state of stress, it is calculated as: [latex]\sigma_v = \sqrt{\frac{1}{2}[(\sigma_{11}-\sigma_{22})^2 + (\sigma_{22}-\sigma_{33})^2 + (\sigma_{33}-\sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2)]}[/latex].
Yielding is predicted to occur when [latex]\sigma_v[/latex] equals the material’s yield strength, [latex]\sigma_y[/latex], which is typically determined from a simple uniaxial tensile test. In principal stress space, the von Mises criterion defines a smooth, circular cylinder whose axis is the hydrostatic line ([latex]\sigma_1 = \sigma_2 = \sigma_3[/latex]). This contrasts with the Tresca criterion, which defines a hexagonal prism. The von Mises criterion generally provides a better fit with experimental data for most ductile metals and is continuously differentiable, which is advantageous in numerical computations.
Type
Disruption
Utilisation
Precursors
- Beltrami’s total strain energy theory
- Huber’s earlier formulation of the distortion energy concept
- Development of the Cauchy stress tensor
- Experimental observations of yielding in ductile metals
Applications
- predicting failure in ductile materials like steel and aluminum in mechanical and civil engineering
- finite element analysis (FEA) to visualize and assess stress concentrations
- design of pressure vessels and piping systems
- automotive component design for durability and crash safety
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Related Invention, Innovation & Technical Principles