Maison » The Gauss-Bonnet Theorem

The Gauss-Bonnet Theorem

1848
  • Carl Friedrich Gauss
  • Pierre Ossian Bonnet

The Gauss-Bonnet theorem connects the geometry of a compact two-dimensional surface to its topology. It states that the integral of the Gaussian curvature [latex]K[/latex] over the entire surface [latex]M[/latex] is equal to [latex]2\pi[/latex] times the Euler characteristic [latex]\chi(M)[/latex] of the surface. The formula is [latex]\int_M K \, dA = 2\pi \chi(M)[/latex].

The Gauss-Bonnet theorem is a remarkable statement that provides a deep link between the local geometric properties of a surface and its global topological structure. The left side of the equation, [latex]\int_M K \, dA[/latex], involves integrating the Gaussian curvature—a quantity that can vary from point to point—over the entire surface. This is a purely geometric quantity. The right side, [latex]2\pi \chi(M)[/latex], involves the Euler characteristic, [latex]\chi(M) = V – E + F[/latex] (Vertices – Edges + Faces for any triangulation of the surface), which is a topological invariant. This means [latex]\chi(M)[/latex] does not change under continuous deformations of the surface; for example, a sphere always has [latex]\chi=2[/latex] and a torus always has [latex]\chi=0[/latex], regardless of how they are stretched or bent.

The theorem implies that no matter how you deform a surface, the total curvature must remain constant. If you create a dimple in a sphere (introducing negative curvature), you must simultaneously create areas of higher positive curvature elsewhere to keep the total integral equal to [latex]4\pi[/latex] (since [latex]\chi(sphere)=2[/latex]). For a torus, the total curvature must always be zero; any region of positive curvature must be exactly balanced by a region of negative curvature. This theorem was a precursor to more general index theorems, like the Atiyah-Singer index theorem, which relate analytical and topological invariants in higher dimensions.

UNESCO Nomenclature: 1204
– Geometry

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Girard’s theorem on the area of spherical triangles
  • Gauss’s work on intrinsic curvature (Theorema Egregium)
  • Euler’s polyhedral formula (V – E + F = 2)
  • Development of integral calculus

Applications

  • topology (linking a geometric property, curvature, to a topological invariant, the euler characteristic)
  • physics (in the context of quantum field theory and string theory)
  • computer graphics (for mesh processing and analysis)
  • robotique (for path planning on complex surfaces)

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: gauss-bonnet, gaussian curvature, euler characteristic, topology, geometry, integral, surface, invariant

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi