Maison » Le théorème de Gauss-Bonnet

Le théorème de Gauss-Bonnet

1848
  • Carl Friedrich Gauss
  • Pierre Ossian Bonnet
Salle d'étude d'un mathématicien avec des papiers parcheminés et des diagrammes géométriques liés au théorème de Gauss-Bonnet.

(generate image for illustration only)

Le théorème de Gauss-Bonnet relie la géométrie d'une surface compacte à deux dimensions à sa topologie. Il stipule que l'intégrale de la courbure gaussienne [latex]K[/latex] sur l'ensemble de la surface [latex]M[/latex] est égale à [latex]2\pi[/latex] fois la caractéristique d'Euler [latex]\chi(M)[/latex] de la surface. La formule est [latex]\int_M K \, dA = 2\pi \chi(M)[/latex].

The Gauss-Bonnet theorem is a remarkable statement that provides a deep link between the local geometric properties of a surface and its global topological structure. The left side of the equation, [latex]\int_M K \, dA[/latex], involves integrating the Gaussian curvature—a quantity that can vary from point to point—over the entire surface. This is a purely geometric quantity. The right side, [latex]2\pi \chi(M)[/latex], involves the Euler characteristic, [latex]\chi(M) = V – E + F[/latex] (Vertices – Edges + Faces for any triangulation of the surface), which is a topological invariant. This means [latex]\chi(M)[/latex] does not change under continuous deformations of the surface; for example, a sphere always has [latex]\chi=2[/latex] and a torus always has [latex]\chi=0[/latex], regardless of how they are stretched or bent.

The theorem implies that no matter how you deform a surface, the total curvature must remain constant. If you create a dimple in a sphere (introducing negative curvature), you must simultaneously create areas of higher positive curvature elsewhere to keep the total integral equal to [latex]4\pi[/latex] (since [latex]\chi(sphere)=2[/latex]). For a torus, the total curvature must always be zero; any region of positive curvature must be exactly balanced by a region of negative curvature. This theorem was a precursor to more general index theorems, like the Atiyah-Singer index theorem, which relate analytical and topological invariants in higher dimensions.

UNESCO Nomenclature: 1204
- Géométrie

Taper

Système abstrait

Perturbation

Fondamentaux

Usage

Utilisation généralisée

Précurseurs

  • Girard’s theorem on the area of spherical triangles
  • Gauss’s work on intrinsic curvature (Theorema Egregium)
  • Euler’s polyhedral formula (V – E + F = 2)
  • Development of integral calculus

Applications

  • topology (linking a geometric property, curvature, to a topological invariant, the euler characteristic)
  • physics (in the context of quantum field theory and string theory)
  • computer graphics (for mesh processing and analysis)
  • robotics (for path planning on complex surfaces)

Brevets:

NA

Idées d'innovations potentielles

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: gauss-bonnet, gaussian curvature, euler characteristic, topology, geometry, integral, surface, invariant.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet, ingénierie des procédés ou R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Production allégée, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Contexte historique

(si la date est inconnue ou non pertinente, par exemple « mécanique des fluides », une estimation arrondie de son émergence notable est fournie)

Inventions, innovations et principes techniques connexes

Retour en haut

Vous aimerez peut-être aussi