Maison » Seven Bridges of Königsberg

Seven Bridges of Königsberg

1736
  • Leonhard Euler

This is a historically notable problem in mathematics. Its negative resolution by Leonhard Euler in 1736 laid the foundations of graph theory and prefigured the idea of topology. The problem asked if the seven bridges of the city of Königsberg could all be traversed in a single trip without doubling back, with the trip ending on the same landmass it began.

The city of Königsberg in Prussia (now Kaliningrad, Russia) was set on both sides of the Pregel River and included two large islands which were connected to each other, and to the mainland, by seven bridges. The problem was to find a walk through the city that would cross each of those bridges once and only once. Euler’s insight was to abstract the problem by stripping away all features except the land masses and the bridges connecting them. He represented each of the four land masses as a point (a vertex) and each bridge as a line (an edge) connecting the vertices. The resulting mathematical structure is a graph. Euler realized that a path traversing each edge exactly once (an Eulerian path) is possible only if the graph is connected and has zero or two vertices of odd degree (degree being the number of edges connected to a vertex). The Königsberg graph had four vertices, all of which had an odd degree (one with degree 5, and three with degree 3). Therefore, Euler proved that such a path was impossible. This solution is considered the first theorem of graph theory and one of the first results in topology, as it does not depend on measurements or specific geometry, but only on the connectivity of the graph.

UNESCO Nomenclature: 1203
– Geometry

Type

Abstract System

Disruption

Foundational

Utilisation

Widespread Use

Precursors

  • Basic concepts of geometry from Euclid
  • Early combinatorial problems and recreational mathematics

Applications

  • network routing (e.g., internet traffic, logistics)
  • circuit design
  • genome sequencing
  • operations research
  • social network analysis

Brevets :

QUE

Potential Innovations Ideas

!niveaux !!! Adhésion obligatoire

Vous devez être membre de l'association pour accéder à ce contenu.

S’inscrire maintenant

Vous êtes déjà membre ? Connectez-vous ici
Related to: Königsberg, Euler, graph theory, Eulerian path, vertex, edge, topology, network analysis

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

DISPONIBLE POUR DE NOUVEAUX DÉFIS
Ingénieur mécanique, chef de projet ou de R&D
Développement de produits efficace

Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Intégration électronique métal-plastique, Conception à coût réduit, BPF, Ergonomie, Appareils et consommables de volume moyen à élevé, Secteurs réglementés, CE et FDA, CAO, Solidworks, Lean Sigma Black Belt, ISO 13485 médical

Nous recherchons un nouveau sponsor

 

Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <

Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu

ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<

Historical Context

(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)

Related Invention, Innovation & Technical Principles

Retour en haut

Vous aimerez peut-être aussi