Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds—smooth manifolds equipped with a Riemannian metric. This metric is a collection of inner products on the tangent spaces, varying smoothly from point to point. It allows for the definition of local geometric notions like angle, length of curves, surface area, and volume, leading to a generalized notion of curvature.
Riemannian Geometry
- Bernhard Riemann
Riemannian geometry, introduced in Bernhard Riemann’s 1854 lecture “On the Hypotheses which lie at the Bases of Geometry,” generalizes Gauss’s theory of surfaces to any number of dimensions. The key object is a Riemannian manifold, which is a differentiable manifold where each tangent space [latex]T_p M[/latex] at a point [latex]p[/latex] is equipped with an inner product [latex]g_p[/latex], called the Riemannian metric. This metric must vary smoothly as [latex]p[/latex] varies over the manifold.
The metric tensor [latex]g[/latex] allows one to measure the length of tangent vectors and the angle between them. Consequently, one can define the length of a curve by integrating the length of its velocity vector. The shortest path between two points is called a geodesic, which generalizes the concept of a “straight line” to curved spaces. The deviation of geodesics from each other reveals the curvature of the manifold.
The full description of curvature in Riemannian geometry is captured by the Riemann curvature tensor, [latex]R(u, v)w[/latex]. This tensor is a multilinear map that quantifies the extent to which the covariant derivative fails to commute. It contains all the intrinsic geometric information of the manifold and generalizes the single value of Gaussian curvature for surfaces. Contractions of the Riemann tensor yield other important curvature measures like the Ricci tensor and scalar curvature, which are central to Einstein’s theory of general relativity.
Type
Disruption
Utilisation
Precursors
- Gauss’s theory of surfaces (Disquisitiones generales circa superficies curvas)
- Non-Euclidean geometries of Lobachevsky and Bolyai
- Development of tensor calculus by Ricci-Curbastro and Levi-Civita
- Concept of a manifold
Applications
- general theory of relativity (spacetime is a pseudo-riemannian manifold)
- data science (manifold learning techniques)
- robotique (motion planning in configuration spaces)
- geodesy (modeling the earth’s shape)
- computer vision (shape analysis)
Brevets :
Potential Innovations Ideas
!niveaux !!! Adhésion obligatoire
Vous devez être membre de l'association pour accéder à ce contenu.
DISPONIBLE POUR DE NOUVEAUX DÉFIS
Mechanical Engineer, Project, Process Engineering or R&D Manager
Disponible pour un nouveau défi dans un court délai.
Contactez-moi sur LinkedIn
Plastic metal electronics integration, Design-to-cost, GMP, Ergonomics, Medium to high-volume devices & consumables, Lean Manufacturing, Regulated industries, CE & FDA, CAD, Solidworks, Lean Sigma Black Belt, medical ISO 13485
Nous recherchons un nouveau sponsor
Votre entreprise ou institution est dans le domaine de la technique, de la science ou de la recherche ?
> envoyez-nous un message <
Recevez tous les nouveaux articles
Gratuit, pas de spam, email non distribué ni revendu
ou vous pouvez obtenir votre adhésion complète - gratuitement - pour accéder à tout le contenu restreint >ici<
Historical Context
Riemannian Geometry
(if date is unknown or not relevant, e.g. "fluid mechanics", a rounded estimation of its notable emergence is provided)
Related Invention, Innovation & Technical Principles